34 research outputs found

    Towards Conceptual Modelling Interoperability in a Web Tool for Ontology Engineering

    Get PDF
    The definition of suitable visual paradigms for ontology modelling is still an open issue. Despite obvious differences between the expressiveness of conceptual modelling (CM) languages and ontologies, many proposed tools have been based on UML, EER and ORM. Additionally, all of these tools support only one CM as visual language, reducing even more their modelling capabilities. In previous works, we have presented crowd as a Web architecture for graphical ontology designing in UML and logical reasoning to verify the relevant properties of these models. The aim of this tool is to extend the reasoning capabilities on top of visual representations as much as possible. In this paper, we present an extended crowd architecture and a new prototype focusing on an ontology-driven metamodel to enable different CMs visual languages for ontology modelling. Thus facilitating inter-model assertions across models represented in different languages, converting between modelling languages and reasoning on them. Finally, we detail the new architecture and demonstrate the usage of the prototype with simple examples.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Towards Conceptual Modelling Interoperability in a Web Tool for Ontology Engineering

    Get PDF
    The definition of suitable visual paradigms for ontology modelling is still an open issue. Despite obvious differences between the expressiveness of conceptual modelling (CM) languages and ontologies, many proposed tools have been based on UML, EER and ORM. Additionally, all of these tools support only one CM as visual language, reducing even more their modelling capabilities. In previous works, we have presented crowd as a Web architecture for graphical ontology designing in UML and logical reasoning to verify the relevant properties of these models. The aim of this tool is to extend the reasoning capabilities on top of visual representations as much as possible. In this paper, we present an extended crowd architecture and a new prototype focusing on an ontology-driven metamodel to enable different CMs visual languages for ontology modelling. Thus facilitating inter-model assertions across models represented in different languages, converting between modelling languages and reasoning on them. Finally, we detail the new architecture and demonstrate the usage of the prototype with simple examples.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Towards Conceptual Modelling Interoperability in a Web Tool for Ontology Engineering

    Get PDF
    The definition of suitable visual paradigms for ontology modelling is still an open issue. Despite obvious differences between the expressiveness of conceptual modelling (CM) languages and ontologies, many proposed tools have been based on UML, EER and ORM. Additionally, all of these tools support only one CM as visual language, reducing even more their modelling capabilities. In previous works, we have presented crowd as a Web architecture for graphical ontology designing in UML and logical reasoning to verify the relevant properties of these models. The aim of this tool is to extend the reasoning capabilities on top of visual representations as much as possible. In this paper, we present an extended crowd architecture and a new prototype focusing on an ontology-driven metamodel to enable different CMs visual languages for ontology modelling. Thus facilitating inter-model assertions across models represented in different languages, converting between modelling languages and reasoning on them. Finally, we detail the new architecture and demonstrate the usage of the prototype with simple examples

    Towards Conceptual Modelling Interoperability in a Web Tool for Ontology Engineering

    Get PDF
    The definition of suitable visual paradigms for ontology modelling is still an open issue. Despite obvious differences between the expressiveness of conceptual modelling (CM) languages and ontologies, many proposed tools have been based on UML, EER and ORM. Additionally, all of these tools support only one CM as visual language, reducing even more their modelling capabilities. In previous works, we have presented crowd as a Web architecture for graphical ontology designing in UML and logical reasoning to verify the relevant properties of these models. The aim of this tool is to extend the reasoning capabilities on top of visual representations as much as possible. In this paper, we present an extended crowd architecture and a new prototype focusing on an ontology-driven metamodel to enable different CMs visual languages for ontology modelling. Thus facilitating inter-model assertions across models represented in different languages, converting between modelling languages and reasoning on them. Finally, we detail the new architecture and demonstrate the usage of the prototype with simple examples.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    An ontology-driven unifying metamodel of UML Class Diagrams, EER, and ORM2

    Get PDF
    Software interoperability and application integration can be realized \linebreak through using their respective conceptual data models, which may be represented in different conceptual data modeling languages. Such modeling languages seem similar, yet are known to be distinct. Several translations between subsets of the languages' features exist, but there is no unifying framework that respects most language features of the static structural components and constraints. We aim to fill this gap. To this end, we designed a common and unified ontology-driven metamodel of the static, structural components and constraints in such a way that it unifies ER, EER, UML Class Diagrams v2.4.1, and ORM and ORM2 such that each one is a proper fragment of the consistent metamodel. The paper also presents some notable insights into the relatively few common entities and constraints, an analysis on roles, relationships, and attributes, and other modeling motivations are discussed. We describe two practical use cases of the metamodel, being a quantitative assessment of the entities of 30 models in ER/EER, UML, and ORM/ORM2, and a qualitative evaluation of inter-model assertions

    Lenguajes austeros de modelado conceptual de datos basados en evidencias

    Get PDF
    Multiple logic-based reconstructions of UML class diagram, Entity Relationship diagrams, and Obect-Role Model diagrams exists. They mainly cover various fragments of these Conceptual Data Modelling Languages and none are formalised such that the logic applies simultaneously for the three language families as a unifying mechanism. This hampers interchangeability, interoperability, and tooling support. In addition, due to the lack of a systematic design process of the logic used for the formalisation, hidden choices permeate the formalisations that have rendered them incompatible. We aim to address these problems, first, by structuring the logic design process in a methodological way. We generalise and extend the DSL design process to logic language design. In particular, a new phase of ontological analysis of language features is included, to apply to logic language design more generally and, in particular, by incorporating an ontological analysis of language features in the process. Second, we specify minimal logic profiles availing of this extended process, including the ontological commitments embedded in the languages, of evidence gathered of language feature usage, and of computational complexity insights from Description Logics (DL). The profiles characterise the essential logic structure needed to handle the semantics of conceptual models, therewith enabling the development of interoperability tools. No known DL language matches exactly the features of those profiles and the common core is in the tractable DL ACJfl. Although hardly any inconsistencies can be derived with the profiles, it is promising for scalable runtime use of conceptual data models.Existen varias reconstrucciones basadas en lógica de lenguajes de modelado conceptual como EER, diagramas de clases UML y ORM. Principalmente cubren fragmentos de estos lenguajes, y sus formalizaciones no están hechas para que se apliquen simultáneamente a estas tres familias de lenguajes como un mecanismo de unificación. Este hecho atenta contra el intercambio y la interoperabilidad de los modelos y el desarrollo de herramientas de soporte. Además, dada la falta de un proceso sistemático de diseño, ciertas decisiones ocultas en la representación lógica hacen que las formalizaciones sean incompatibles. En este trabajo nos proponemos atacar este problema, proponiendo primero un proceso de diseño lógico que puede ser aplicado en forma metodológica. Se generaliza y extiende el proceso DSL para que se pueda aplicar al diseño de lenguajes lógicos en general, incorporando análisis ontológico de las características del lenguaje. Segundo, se especifican perfiles lógicos minimales que sacan provecho de este proceso extendido, incluyendo los compromisos ontológicos asumidos, de evidencia de uso de las características del lenguaje, y de los propiedades computacionales de las Lógicas Descriptivas (DL, description logics). Estos perfiles caracterizan la estructura lógica esencial que se necesita para manejar la semántica de los modelos conceptuales, habilitando el desarrollo de herramientas automáticas de interoperabilidad. No existe correspondencia exacta directa entre estos perfiles y fragmentos conocidos de lenguajes DL, y el núcleo común es pequeño (la lógica tratable ACNT). Aunque es muy poca la posibilidad de derivar inconsistencias dentro de estos perfiles, es prometedor su uso en modelos conceptuales dado su complejidad en tiempo escalable.Facultad de Informátic

    Evidence-based Languages for Conceptual Data Modelling Profiles

    Get PDF
    To improve database system quality as well as runtime use of conceptual models, many logic-based reconstructions of conceptual data modelling languages have been proposed in a myriad of logics. They each cover their features to a greater or lesser extent and are typically motivated from a logic viewpoint. This raises questions such as what would be an evidence-based common core and what is the optimal language profile for a conceptual modelling language family. Based on a common metamodel of UML Class Diagrams (v2.4.1), ER/EER, and ORM/2's static elements, a set of 101 conceptual models, and availing of computational complexity insights from Description Logics, we specify these profiles. There is no known DL language that matches exactly the features of those profiles and the common core is small (in the tractable ALNI\mathcal{ALNI}). Although hardly any inconsistencies can be derived with the profiles, it is promising for scalable runtime use of conceptual data models

    Conceptual Model Interoperability: a Metamodel-driven Approach

    Get PDF
    Linking, integrating, or converting conceptual data models represented in different modelling languages is a common aspect in the design and maintenance of complex information systems. While such languages seem similar, they are known to be distinct and no unifying framework exists that respects all of their language features in either model transformations or inter-model assertions to relate them. We aim to address this issue using an approach where the rules are enhanced with a logic-based metamodel. We present the main approach and some essential metamodel-driven rules for the static, structural, components of ER, EER, UML v2.4.1, ORM, and ORM2. The transformations for model elements and patterns are used with the metamodel to verify correctness of inter-model assertions across models in different languages

    Evidence-based lean logic profiles for conceptual data modelling languages

    Get PDF
    Multiple logic-based reconstruction of conceptual data modelling languages such as EER, UML Class Diagrams, and ORM exists. They mainly cover various fragments of the languages and none are formalised such that the logic applies simultaneously for all three modelling language families as unifying mechanism. This hampers interchangeability, interoperability, and tooling support. In addition, due to the lack of a systematic design process of the logic used for the formalisation, hidden choices permeate the formalisations that have rendered them incompatible. We aim to address these problems, first, by structuring the logic design process in a methodological way. We generalise and extend the DSL design process to apply to logic language design more generally and, in particular, by incorporating an ontological analysis of language features in the process. Second, availing of this extended process, of evidence gathered of language feature usage, and of computational complexity insights from Description Logics (DL), we specify logic profiles taking into account the ontological commitments embedded in the languages. The profiles characterise the minimum logic structure needed to handle the semantics of conceptual models, enabling the development of interoperability tools. There is no known DL language that matches exactly the features of those profiles and the common core is small (in the tractable ALNI). Although hardly any inconsistencies can be derived with the profiles, it is promising for scalable runtime use of conceptual data models
    corecore