25,455 research outputs found

    An ontology-based similarity measurement for problem-based case reasoning

    Get PDF
    Author name used in this publication: Adela Lau2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Blending the physical and the digital through conceptual spaces

    Get PDF
    The rise of the Internet facilitates an ever increasing growth of virtual, i.e. digital spaces which co-exist with the physical environment, i.e. the physical space. In that, the question arises, how physical and digital space can interact synchronously. While sensors provide a means to continuously observe the physical space, several issues arise with respect to mapping sensor data streams to digital spaces, for instance, structured linked data, formally represented through symbolic Semantic Web (SW) standards such as OWL or RDF. The challenge is to bridge between symbolic knowledge representations and the measured data collected by sensors. In particular, one needs to map a given set of arbitrary sensor data to a particular set of symbolic knowledge representations, e.g. ontology instances. This task is particularly challenging due to the vast variety of possible sensor measurements. Conceptual Spaces (CS) provide a means to represent knowledge in geometrical vector spaces in order to enable computation of similarities between knowledge entities by means of distance metrics. We propose an approach which allows to refine symbolic concepts as CS and to ground ontology instances to so-called prototypical members which are vectors in the CS. By computing similarities in terms of spatial distances between a given set of sensor measurements and a finite set of CS members, the most similar instance can be identified. In that, we provide a means to bridge between the physical space, as observed by sensors, and the digital space made up of symbolic representations

    Semantic-driven matchmaking of web services using case-based reasoning

    Get PDF
    With the rapid proliferation of Web services as the medium of choice to securely publish application services beyond the firewall, the importance of accurate, yet flexible matchmaking of similar services gains importance both for the human user and for dynamic composition engines. In this paper, we present a novel approach that utilizes the case based reasoning methodology for modelling dynamic Web service discovery and matchmaking. Our framework considers Web services execution experiences in the decision making process and is highly adaptable to the service requester constraints. The framework also utilises OWL semantic descriptions extensively for implementing both the components of the CBR engine and the matchmaking profile of the Web services

    Exploiting conceptual spaces for ontology integration

    Get PDF
    The widespread use of ontologies raises the need to integrate distinct conceptualisations. Whereas the symbolic approach of established representation standards – based on first-order logic (FOL) and syllogistic reasoning – does not implicitly represent semantic similarities, ontology mapping addresses this problem by aiming at establishing formal relations between a set of knowledge entities which represent the same or a similar meaning in distinct ontologies. However, manually or semi-automatically identifying similarity relationships is costly. Hence, we argue, that representational facilities are required which enable to implicitly represent similarities. Whereas Conceptual Spaces (CS) address similarity computation through the representation of concepts as vector spaces, CS rovide neither an implicit representational mechanism nor a means to represent arbitrary relations between concepts or instances. In order to overcome these issues, we propose a hybrid knowledge representation approach which extends FOL-based ontologies with a conceptual grounding through a set of CS-based representations. Consequently, semantic similarity between instances – represented as members in CS – is indicated by means of distance metrics. Hence, automatic similarity detection across distinct ontologies is supported in order to facilitate ontology integration

    Bridging between sensor measurements and symbolic ontologies through conceptual spaces

    Get PDF
    The increasing availability of sensor data through a variety of sensor-driven devices raises the need to exploit the data observed by sensors with the help of formally specified knowledge representations, such as the ones provided by the Semantic Web. In order to facilitate such a Semantic Sensor Web, the challenge is to bridge between symbolic knowledge representations and the measured data collected by sensors. In particular, one needs to map a given set of arbitrary sensor data to a particular set of symbolic knowledge representations, e.g. ontology instances. This task is particularly challenging due to the potential infinite variety of possible sensor measurements. Conceptual Spaces (CS) provide a means to represent knowledge in geometrical vector spaces in order to enable computation of similarities between knowledge entities by means of distance metrics. We propose an ontology for CS which allows to refine symbolic concepts as CS and to ground instances to so-called prototypical members described by vectors. By computing similarities in terms of spatial distances between a given set of sensor measurements and a finite set of prototypical members, the most similar instance can be identified. In that, we provide a means to bridge between the real-world as observed by sensors and symbolic representations. We also propose an initial implementation utilizing our approach for measurement-based Semantic Web Service discovery

    Analysis reuse exploiting taxonomical information and belief assignment in industrial problem solving

    Get PDF
    To take into account the experience feedback on solving complex problems in business is deemed as a way to improve the quality of products and processes. Only a few academic works, however, are concerned with the representation and the instrumentation of experience feedback systems. We propose, in this paper, a model of experiences and mechanisms to use these experiences. More specifically, we wish to encourage the reuse of already performed expert analysis to propose a priori analysis in the solving of a new problem. The proposal is based on a representation in the context of the experience of using a conceptual marker and an explicit representation of the analysis incorporating expert opinions and the fusion of these opinions. The experience feedback models and inference mechanisms are integrated in a commercial support tool for problem solving methodologies. The results obtained to this point have already led to the definition of the role of ‘‘Rex Manager’’ with principles of sustainable management for continuous improvement of industrial processes in companies

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Semantic Grounding Strategies for Tagbased Recommender Systems

    Full text link
    Recommender systems usually operate on similarities between recommended items or users. Tag based recommender systems utilize similarities on tags. The tags are however mostly free user entered phrases. Therefore, similarities computed without their semantic groundings might lead to less relevant recommendations. In this paper, we study a semantic grounding used for tag similarity calculus. We show a comprehensive analysis of semantic grounding given by 20 ontologies from different domains. The study besides other things reveals that currently available OWL ontologies are very narrow and the percentage of the similarity expansions is rather small. WordNet scores slightly better as it is broader but not much as it does not support several semantic relationships. Furthermore, the study reveals that even with such number of expansions, the recommendations change considerably.Comment: 13 pages, 5 figure
    corecore