1,536 research outputs found

    Semantically-Aware Retrieval of Oceanographic Phenomena Annotated on Satellite Images

    Get PDF
    Scientists in the marine domain process satellite images in order to extract information that can be used for monitoring, understanding, and forecasting of marine phenomena, such as turbidity, algal blooms and oil spills. The growing need for effective retrieval of related information has motivated the adoption of semantically aware strategies on satellite images with different spatiotemporal and spectral characteristics. A big issue of these approaches is the lack of coincidence between the information that can be extracted from the visual data and the interpretation that the same data have for a user in a given situation. In this work, we bridge this semantic gap by connecting the quantitative elements of the Earth Observation satellite images with the qualitative information, modelling this knowledge in a marine phenomena ontology and developing a question answering mechanism based on natural language that enables the retrieval of the most appropriate data for each user’s needs. The main objective of the presented methodology is to realize the content-based search of Earth Observation images related to the marine application domain on an application-specific basis that can answer queries such as “Find oil spills that occurred this year in the Adriatic Sea”

    OBIA System for Identifying Mesoscale Oceanic Structures in SeaWiFS and MODIS-Aqua Images

    Get PDF
    The ocean covers over 70% of the surface of our planet and plays a key role in the global climate. Most ocean circulation is mesoscale (scales of 50–500 km and 10–100 days), and the energy in mesoscale circulation is at least one order of magnitude greater than general circulation; therefore, the study of mesoscale oceanic structures (MOS) is crucial to ocean dynamics, making it especially useful for analyzing global changes. The detection of MOS, such as upwellings or eddies, from satellites images is significant for marine environmental studies and coastal resource management. In this paper, we present an object-based image analysis (OBIA) system which segments and classifies regions contained in sea-viewing field-of-view sensor (SeaWiFS) and Moderate Resolution Imaging Spectro-radiometer (MODIS)-Aqua sensor satellite images into MOS. After color clustering and hierarchical data format (HDF) file processing, the OBIA system segments images and extracts image descriptors, producing primary regions. Then, it merges regions, recalculating image descriptors for MOS identification and definition. First, regions are labeled by a human-expert, who identifies MOS: upwellings, eddies, cool, and warm eddies. Labeled regions are then classified by learning algorithms (i.e., decision tree, Bayesian network, artificial neural network, genetic algorithm, and near neighbor algorithm) from selected features. Finally, the OBIA system enables images to be queried from the user interface and retrieved by means of fuzzy descriptors and oceanic structures. We tested our system with images from the Canary Islands and the North West African coast

    Semantic Remote Sensing Scenes Interpretation and Change Interpretation

    Get PDF
    A fundamental objective of remote sensing imagery is to spread out the knowledge about our environment and to facilitate the interpretation of different phenomena affecting the Earth’s surface. The main goal of this chapter is to understand and interpret possible changes in order to define subsequently strategies and adequate decision-making for a better soil management and protection. Consequently, the semantic interpretation of remote sensing data, which consists of extracting useful information from image date for attaching semantics to the observed phenomenon, allows easy understanding and interpretation of such occurring changes. However, performing change interpretation task is not only based on the perceptual information derived from data but also based on additional knowledge sources such as a prior and contextual. This knowledge needs to be encoded in an appropriate way for being used as a guide in the interpretation process. On the other hand, interpretation may take place at several levels of complexity from the simple recognition of objects on the analyzed scene to the inference of site conditions and to change interpretation. For each level, information elements such as data, information and knowledge need to be represented and characterized. This chapter highlights the importance of ontologies exploiting for encoding the domain knowledge and for using it as a guide in the semantic scene interpretation task

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Formalizing spatiotemporal knowledge in remote sensing applications to improve image interpretation

    Get PDF
    Technological tools allow the generation of large volumes of data. For example satellite images aid in the study of spatiotemporal phenomena in a range of disciplines such as urban planning environmental sciences and health care. Thus remote-sensing experts must handle various and complex image sets for their interpretations. The GIS community has undertaken significant work in describing spatiotemporal features and standard specifications nowadays provide design foundations for GIS software and spatial databases. We argue that this spatiotemporal knowledge and expertise would provide invaluable support for the field of image interpretation. As a result we propose a high level conceptual framework based on existing and standardized approaches offering enough modularity and adaptability to represent the various dimensions of spatiotemporal knowledge

    Very-High-Resolution SAR Images and Linked Open Data Analytics Based on Ontologies

    Get PDF
    In this paper, we deal with the integration of multiple sources of information such as Earth observation (EO) synthetic aperture radar (SAR) images and their metadata, semantic descriptors of the image content, as well as other publicly available geospatial data sources expressed as linked open data for posing complex queries in order to support geospatial data analytics. Our approach lays the foundations for the development of richer tools and applications that focus on EO image analytics using ontologies and linked open data. We introduce a system architecture where a common satellite image product is transformed from its initial format into to actionable intelligence information, which includes image descriptors, metadata, image tiles, and semantic labels resulting in an EO-data model. We also create a SAR image ontology based on our EO-data model and a two-level taxonomy classification scheme of the image content. We demonstrate our approach by linking high-resolution TerraSAR-X images with information from CORINE Land Cover (CLC), Urban Atlas (UA), GeoNames, and OpenStreetMap (OSM), which are represented in the standard triple model of the resource description frameworks (RDFs)

    Estimating Fire Weather Indices via Semantic Reasoning over Wireless Sensor Network Data Streams

    Full text link
    Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire management resources. Existing systems that calculate fire weather indices are limited due to low spatial and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by applying Semantic Web Technologies to the processing of data streams from a wireless sensor network deployed in the Springbrook region of South East Queensland. This paper describes the underlying ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We also describe the Web-based mapping interface that we have developed, that enables users to improve their understanding of how fire weather indices vary over time within a particular region.Finally, we discuss our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in terms of accuracy, precision and query performance.Comment: 20pages, 12 figure

    Metadata and provenance management

    Get PDF
    Scientists today collect, analyze, and generate TeraBytes and PetaBytes of data. These data are often shared and further processed and analyzed among collaborators. In order to facilitate sharing and data interpretations, data need to carry with it metadata about how the data was collected or generated, and provenance information about how the data was processed. This chapter describes metadata and provenance in the context of the data lifecycle. It also gives an overview of the approaches to metadata and provenance management, followed by examples of how applications use metadata and provenance in their scientific processes
    corecore