674 research outputs found

    Methodologies of Legacy Clinical Decision Support System -A Review

    Get PDF
    Information technology playing a prominent role in the field of medical by incorporating the Clinical Decision Support System(CDSS) in their routine practices. CDSS is a computer based interactive program to assist the physician to make the right decision at the right time. Now a day's Clinical decision support system is a dynamic research area in the field of computer, but the lack of the knowledge of the understanding as well as the functioning of the system ,make the adoption slow by the physician and patient. The literature review of this paper will focus on the overview of legacy CDSS, the kind of methodologies and classifier employed to prepare such decision support system using a non-technical approach to the physician and the strategy- makers . This study will provide the scope of understanding the clinical decision support along with the gateway to physician ,policy-makers to develop and deploy the decision support system as a healthcare service to make the quick, agile and right decision. Future direction to handle the uncertainties along with the challenges of clinical decision support system are also enlightened in this study

    Intelligent technologies for real-time monitoring and decision support systems

    Get PDF
    MPhilAutomation of data processing and control of operations involving intelligent technologies that is considered the next generation technology requires error-free data capture systems in both clinical research and healthcare. The presented research constitutes a step in the development of intelligent technologies in healthcare. The proposed improvement is by automation that includes the elements of intelligence and prediction. In particular automatic data acquisition systems for several devices are developed including pervasive computing technologies for mobility. The key feature of the system is the minimisation/near eradication of erroneous data input along with a number of other security measures ensuring completeness, accuracy and reliability of the patients‟ data. The development is based on utilising existing devices to keep the cost of Data Acquisition Systems down. However, with existing technology and devices one can be limited to features required to perform more refined analysis. Research of existing and development of a new device for assessment of neurological diseases, such as MS (Multiple Sclerosis) using Stroop test is performed. The software can also be customized for use in other diseases affecting Central Nervous System such as Parkinson‟s disease. The introduction of intelligent functions into the majority of operations enables quality checks and provides on-line user assistance. It could become a key tool in the first step of patient diagnosis before referring to more advanced tests for further investigation. Although the software cannot fully ensure the diagnosis of MS or PD but can make significant contribution in the process of diagnosis and monitorin

    OntoVIP: An ontology for the annotation of object models used for medical image simulation.

    Get PDF
    International audienceThis paper describes the creation of a comprehensive conceptualization of object models used in medical image simulation, suitable for major imaging modalities and simulators. The goal is to create an application ontology that can be used to annotate the models in a repository integrated in the Virtual Imaging Platform (VIP), to facilitate their sharing and reuse. Annotations make the anatomical, physiological and pathophysiological content of the object models explicit. In such an interdisciplinary context we chose to rely on a common integration framework provided by a foundational ontology, that facilitates the consistent integration of the various modules extracted from several existing ontologies, i.e. FMA, PATO, MPATH, RadLex and ChEBI. Emphasis is put on methodology for achieving this extraction and integration. The most salient aspects of the ontology are presented, especially the organization in model layers, as well as its use to browse and query the model repository

    Neural network supervised and reinforcement learning for neurological, diagnostic, and modeling problems

    Get PDF
    “As the medical world becomes increasingly intertwined with the tech sphere, machine learning on medical datasets and mathematical models becomes an attractive application. This research looks at the predictive capabilities of neural networks and other machine learning algorithms, and assesses the validity of several feature selection strategies to reduce the negative effects of high dataset dimensionality. Our results indicate that several feature selection methods can maintain high validation and test accuracy on classification tasks, with neural networks performing best, for both single class and multi-class classification applications. This research also evaluates a proof-of-concept application of a deep-Q-learning network (DQN) to model the impact of altered pH on respiratory rate, based on the Henderson-Hasselbalch equation. The model behaves as expected and is a preliminary example of how reinforcement learning can be utilized for medical modelling. Its sophistication will be improved in future works”--Abstract, page iv

    Thirty years of artificial intelligence in medicine (AIME) conferences: A review of research themes

    Get PDF
    Over the past 30 years, the international conference on Artificial Intelligence in MEdicine (AIME) has been organized at different venues across Europe every 2 years, establishing a forum for scientific exchange and creating an active research community. The Artificial Intelligence in Medicine journal has published theme issues with extended versions of selected AIME papers since 1998

    Knowledge-based variable selection for learning rules from proteomic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incorporation of biological knowledge can enhance the analysis of biomedical data. We present a novel method that uses a proteomic knowledge base to enhance the performance of a rule-learning algorithm in identifying putative biomarkers of disease from high-dimensional proteomic mass spectral data. In particular, we use the Empirical Proteomics Ontology Knowledge Base (EPO-KB) that contains previously identified and validated proteomic biomarkers to select <it>m/z</it>s in a proteomic dataset prior to analysis to increase performance.</p> <p>Results</p> <p>We show that using EPO-KB as a pre-processing method, specifically selecting all biomarkers found only in the biofluid of the proteomic dataset, reduces the dimensionality by 95% and provides a statistically significantly greater increase in performance over no variable selection and random variable selection.</p> <p>Conclusion</p> <p>Knowledge-based variable selection even with a sparsely-populated resource such as the EPO-KB increases overall performance of rule-learning for disease classification from high-dimensional proteomic mass spectra.</p

    Prenatal phenotyping: A community effort to enhance the Human Phenotype Ontology.

    Get PDF
    Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care
    • …
    corecore