22,389 research outputs found

    An ontology-based approach supporting holistic structural design with the consideration of safety, environmental impact and cost

    Get PDF
    Early stage decision-making for structural design critically influences the overall cost and environmental performance of buildings and infrastructure. However, the current approach often fails to consider the multi-perspectives of structural design, such as safety, environmental issues and cost in a comprehensive way. This paper presents a holistic approach based on knowledge processing (ontology) to facilitate a smarter decision-making process for early design stage by informing designers of the environmental impact and cost along with safety considerations. The approach can give a reasoning based quantitative understanding of how the design alternatives using different concrete materials can affect the ultimate overall performance. Embodied CO2 and cost are both considered along with safety criteria as indicative multi-perspectives to demonstrate the novelty of the approach. A case study of a concrete structural frame is used to explain how the proposed method can be used by structural designers when taking multi performance criteria into account. The major contribution of the paper lies on the creation of a holistic knowledge base which links through different knowledge across sectors to enable the structural engineer to come up with much more comprehensive decisions instead of individual single objective targeted delivery

    An ontology-based approach supporting holistic structural design with the consideration of safety, environmental impact and cost

    Get PDF
    Early stage decision-making for structural design critically influences the overall cost and environmental performance of buildings and infrastructure. However, the current approach often fails to consider the multi-perspectives of structural design, such as safety, environmental issues and cost in a comprehensive way. This paper presents a holistic approach based on knowledge processing (ontology) to facilitate a smarter decision-making process for early design stage by informing designers of the environmental impact and cost along with safety considerations. The approach can give a reasoning based quantitative understanding of how the design alternatives using different concrete materials can affect the ultimate overall performance. Embodied CO2 and cost are both considered along with safety criteria as indicative multi-perspectives to demonstrate the novelty of the approach. A case study of a concrete structural frame is used to explain how the proposed method can be used by structural designers when taking multi performance criteria into account. The major contribution of the paper lies on the creation of a holistic knowledge base which links through different knowledge across sectors to enable the structural engineer to come up with much more comprehensive decisions instead of individual single objective targeted delivery

    A BIM-based value for money assessment in public-private partnership: an overall review

    Get PDF
    Public-private partnerships (PPPs) have proliferated and adapted to public development in recent decades; within it, the value for money (VfM) assessment defines the feasibility of the project procurement model as one of the essential components of PPP. However, evaluating the VfM in PPPs remains problematic. Given concerns about PPP profitability, a more integrated VfM evaluation is urgently needed to manage multiple indicators along the project lifecycle. Building information management (BIM), popular in architecture, engineering, and construction, provides resources that could support the VfM to a great extent. This paper uses a review approach to identify the current issues that are affecting VfM assessments and suggests that BIM, functioning throughout the PPP lifecycle, could support decision-making in VfM processes in order to satisfy service targets

    Building an ontological knowledgebase for bridge maintenance

    Get PDF
    The operation stage has the biggest potential value in the bridge life cycle management, and it often critically influences the overall cost of the bridge. As such, changes in the efficiency of the project's operation stage could be of significant benefit to the overall project. However, current approaches in the operation stage often lack the effective support of computer-aided tools. This research presents a holistic method based on an ontology to achieve automatic rule checking and improve the management and communication of knowledge related to bridge maintenance. The developed ontology can also facilitate a smarter decision-making process for bridge management by informing engineers of choices with different considerations. Three approaches; semantic validation, syntactical validation, and case study validation, have been adopted to evaluate this ontology and demonstrate how the developed ontology can be used by engineers when dealing with different issues. The results showed that this approach can create a holistic knowledge base that can integrate various domain knowledge to enable bridge engineers to make more comprehensive decisions rather than a single objective-targeted delivery

    Special issue "digital twin technology in the AEC industry"

    Get PDF
    Sustainable building design has become a hot topic over the past decades. Many standards, databases, and tools have been developed for achieving a sustainable building. Not until recently have the importance of structural engineering and its contribution to sustainable building design been full recognised. However, due to the highly fragmented and diversity of knowledge across building and infrastructure domains, there is a lack of approach that can address all the sustainable issues within the structural design. This paper reviews the sustainable design from the perspective of structural engineering: (1) reviewing the current situation; (2) identifying the gaps and difficulties; and (3) making recommendations for future improvements. The strategies and indicators, as well as BIM-enabled methodology, for sustainable structural design (SSD) are also discussed in a holistic way. The results of this investigation show that most of the methods are not doing well in terms of delivering a successful sustainable structural design. It is expected that the future BIM could probably provide such a platform to address these issues

    Building Information Modelling [BIM] for energy efficiency in housing refurbishments

    Get PDF
    Building Information modelling offers potential process and delivery improvements throughout the lifecycle of built assets. However, there is limited research in the use of BIM for energy efficiency in housing refurbishments. The UK has over 300,000 solid wall homes with very poor energy efficiency. A BIM based solution for the retrofit of solid wall housing using lean and collaborative improvement techniques will offer a cost effective, comprehensive solution that is less disruptive, reduces waste and increases accuracy, leading to high quality outcomes. The aim of this research is to develop a BIM based protocol supporting development of 'what if' scenarios in housing retrofits for high efficiency thermal improvements, aiming to reduce costs and disruption for users. The paper presents a literature review on the topic and discusses the research method for the research project (S-IMPLER)

    Strategic Roadmaps and Implementation Actions for ICT in Construction

    Get PDF

    An Ontology for Product-Service Systems

    Get PDF
    Industries are transforming their business strategy from a product-centric to a more service-centric nature by bundling products and services into integrated solutions to enhance the relationship between their customers. Since Product- Service Systems design research is currently at a rudimentary stage, the development of a robust ontology for this area would be helpful. The advantages of a standardized ontology are that it could help researchers and practitioners to communicate their views without ambiguity and thus encourage the conception and implementation of useful methods and tools. In this paper, an initial structure of a PSS ontology from the design perspective is proposed and evaluated

    An ontology-based holistic approach for multi-objective sustainable structural design

    Get PDF
    Building construction industry has significant impact on sustainability. The construction, operation and maintenance of buildings account for approximately 50% of global energy usage and anthropogenic greenhouse gas (GHG) emissions. In recent years, the embodied energy and carbon are identified increasingly important in terms of sustainability throughout building life cycle. Incorporation of sustainable development in building structural design becomes undoubtedly crucial. The effective building design requires smart and holistic tools that can process multi-objective and inter-connected domain knowledge to provide genuine sustainable buildings. With the advancement of information and communication technologies, various methods and techniques have been applied to accomplish the multiple objectives of sustainable development in building design. One of the most successful approaches is building information modelling (BIM), which requires further enhancement of interoperability. The emergence of Semantic Web technology provides more opportunity to improve the information modelling, knowledge management and system integration. The research presented in this thesis investigates how ontology and Semantic Web rules can be used in a knowledge-based holistic system, in order to integrate information about structural design and sustainability, and facilitate decision-making in design process by recommending appropriate solutions for different use cases. A research prototype namely OntoSCS incorporating OWL ontology and SWRL rules has been developed and tested in typical structural design cases. The holistic approach considers five inter-connected dimensions of sustainability, including structural feasibility, embodied energy and carbon, cost, durability and safety. In addition, the selection of structural material supplier and criteria in sustainability assessment are taken into account as well. This research concludes that the Semantic Web technology can be applied to structural design at early stage to provide multi-criteria optimised solution. The methodology and framework employed in this study can be further adapted as a generic multi-criteria and holistic decision support system for other domains in construction sector
    corecore