2,452 research outputs found

    Automated Semantic Content Extraction from Images

    Get PDF
    In this study, an automatic semantic segmentation and object recognition methodology is implemented which bridges the semantic gap between low level features of image content and high level conceptual meaning. Semantically understanding an image is essential in modeling autonomous robots, targeting customers in marketing or reverse engineering of building information modeling in the construction industry. To achieve an understanding of a room from a single image we proposed a new object recognition framework which has four major components: segmentation, scene detection, conceptual cueing and object recognition. The new segmentation methodology developed in this research extends Felzenswalb\u27s cost function to include new surface index and depth features as well as color, texture and normal features to overcome issues of occlusion and shadowing commonly found in images. Adding depth allows capturing new features for object recognition stage to achieve high accuracy compared to the current state of the art. The goal was to develop an approach to capture and label perceptually important regions which often reflect global representation and understanding of the image. We developed a system by using contextual and common sense information for improving object recognition and scene detection, and fused the information from scene and objects to reduce the level of uncertainty. This study in addition to improving segmentation, scene detection and object recognition, can be used in applications that require physical parsing of the image into objects, surfaces and their relations. The applications include robotics, social networking, intelligence and anti-terrorism efforts, criminal investigations and security, marketing, and building information modeling in the construction industry. In this dissertation a structural framework (ontology) is developed that generates text descriptions based on understanding of objects, structures and the attributes of an image

    Audio Event Classification Using Deep Learning Methods

    Get PDF
    Whether crossing the road or enjoying a concert, sound carries important information about the world around us. Audio event classification refers to recognition tasks involving the assignment of one or several labels, such as ‘dog bark’ or ‘doorbell’, to a particular audio signal. Thus, teaching machines to conduct this classification task can help humans in many fields. Since deep learning has shown its great potential and usefulness in many AI applications, this thesis focuses on studying deep learning methods and building suitable neural networks for this audio event classification task. In order to evaluate the performance of different neural networks, we tested them on both Google AudioSet and the dataset for DCASE 2018 Task 2. Instead of providing original audio files, AudioSet offers compact 128-dimensional embeddings outputted by a modified VGG model for audio with a frame length of 960ms. For DCASE 2018 Task 2, we firstly preprocessed the soundtracks and then fine-tuned the VGG model that AudioSet used as a feature extractor. Thus, each soundtrack from both tasks is represented as a series of 128-dimensional features. We then compared the DNN, LSTM, and multi-level attention models with different hyper parameters. The results show that fine-tuning the feature generation model for the DCASE task greatly improved the evaluation score. In addition, the attention models were found to perform the best in our settings for both tasks. The results indicate that utilizing a CNN-like model as a feature extractor for the log-mel spectrograms and modeling the dynamics information using an attention model can achieve state-of-the-art results in the task of audio event classification. For future research, the thesis suggests training a better CNN model for feature extraction, utilizing multi-scale and multi-level features for better classification, and combining the audio features with other multimodal information for audiovisual data analysis

    Describing and comparing landscapes using tags, texts, and free lists : an interdisciplinary approach

    Get PDF
    Peer reviewedPublisher PD
    • …
    corecore