578 research outputs found

    Standardization Framework for Sustainability from Circular Economy 4.0

    Get PDF
    The circular economy (CE) is widely known as a way to implement and achieve sustainability, mainly due to its contribution towards the separation of biological and technical nutrients under cyclic industrial metabolism. The incorporation of the principles of the CE in the links of the value chain of the various sectors of the economy strives to ensure circularity, safety, and efficiency. The framework proposed is aligned with the goals of the 2030 Agenda for Sustainable Development regarding the orientation towards the mitigation and regeneration of the metabolic rift by considering a double perspective. Firstly, it strives to conceptualize the CE as a paradigm of sustainability. Its principles are established, and its techniques and tools are organized into two frameworks oriented towards causes (cradle to cradle) and effects (life cycle assessment), and these are structured under the three pillars of sustainability, for their projection within the proposed framework. Secondly, a framework is established to facilitate the implementation of the CE with the use of standards, which constitute the requirements, tools, and indicators to control each life cycle phase, and of key enabling technologies (KETs) that add circular value 4.0 to the socio-ecological transition

    Towards A Generic Supporting Environment For Multiscale Modelling

    Full text link
    Multiscale modelling as an emerging modelling paradigm is now widely regarded as a promising and powerful tool in various disciplines. However, a multiscale model is usually much more difficult to develop than a single-scale model due to a range of challenges. This work presents a methodology to facilitate the development of multiscale models, which comprises three main modelling steps, namely conceptual modelling, model realization and model execution. A set of proof-of-concept tools have been developed to realize the proposed methodology. A case study on the modelling of a heterogeneous chemical reactor is presented to demonstrate these tools and to illustrate the key concepts. © ECMS

    The Inhuman Overhang: On Differential Heterogenesis and Multi-Scalar Modeling

    Get PDF
    As a philosophical paradigm, differential heterogenesis offers us a novel descriptive vantage with which to inscribe Deleuze’s virtuality within the terrain of “differential becoming,” conjugating “pure saliences” so as to parse economies, microhistories, insurgencies, and epistemological evolutionary processes that can be conceived of independently from their representational form. Unlike Gestalt theory’s oppositional constructions, the advantage of this aperture is that it posits a dynamic context to both media and its analysis, rendering them functionally tractable and set in relation to other objects, rather than as sedentary identities. Surveying the genealogy of differential heterogenesis with particular interest in the legacy of Lautman’s dialectic, I make the case for a reading of the Deleuzean virtual that departs from an event-oriented approach, galvanizing Sarti and Citti’s dynamic a priori vis-à-vis Deleuze’s philosophy of difference. Specifically, I posit differential heterogenesis as frame with which to examine our contemporaneous epistemic shift as it relates to multi-scalar computational modeling while paying particular attention to neuro-inferential modes of inductive learning and homologous cognitive architecture. Carving a bricolage between Mark Wilson’s work on the “greediness of scales” and Deleuze’s “scales of reality”, this project threads between static ecologies and active externalism vis-à-vis endocentric frames of reference and syntactical scaffolding

    Climate Science, Development Practice, and Policy Interactions in Dryland Agroecological Systems

    Get PDF
    The literature on drought, livelihoods, and poverty suggests that dryland residents are especially vulnerable to climate change. However, assessing this vulnerability and sharing lessons between dryland communities on how to reduce vulnerability has proven difficult because of multiple definitions of vulnerability, complexities in quantification, and the temporal and spatial variability inherent in dryland agroecological systems. In this closing editorial, we review how we have addressed these challenges through a series of structured, multiscale, and interdisciplinary vulnerability assessment case studies from drylands in West Africa, southern Africa, Mediterranean Europe, Asia, and Latin America. These case studies adopt a common vulnerability framework but employ different approaches to measuring and assessing vulnerability. By comparing methods and results across these cases, we draw out the following key lessons: (1) Our studies show the utility of using consistent conceptual frameworks for vulnerability assessments even when quite different methodological approaches are taken; (2) Utilizing narratives and scenarios to capture the dynamics of dryland agroecological systems shows that vulnerability to climate change may depend more on access to financial, political, and institutional assets than to exposure to environmental change; (3) Our analysis shows that although the results of quantitative models seem authoritative, they may be treated too literally as predictions of the future by policy makers looking for evidence to support different strategies. In conclusion, we acknowledge there is a healthy tension between bottom-up/ qualitative/place-based approaches and top-down/quantitative/generalizable approaches, and we encourage researchers from different disciplines with different disciplinary languages, to talk, collaborate, and engage effectively with each other and with stakeholders at all levels

    Multiscale modelling and simulation: a position paper

    Get PDF
    We argue that, despite the fact that the field of multiscale modelling and simulation has enjoyed significant success within the past decade, it still holds many open questions that are deemed important but so far have barely been explored. We believe that this is at least in part due to the fact that the field has been mainly developed within disciplinary silos. The principal topics that in our view would benefit from a targeted multidisciplinary research effort are related to reaching consensus as to what exactly one means by ‘multiscale modelling’, formulating a generic theory or calculus of multiscale modelling, applying such concepts to the urgent question of validation and verification of multiscale models, and the issue of numerical error propagation in multiscale models. Moreover, we believe that this would, in principle, also lay the foundation for more efficient, well-defined and usable multiscale computing environments. We believe that multidisciplinary research to fill in the gaps is timely, highly relevant, and with substantial potential impact on many scientific disciplines

    A wider view of assessments of ecosystem services in coastal areas : the perspective of social-ecological complexity

    Get PDF
    This research was carried out under the framework of POLICLIMA project (CSO2016-76842-C2-1-R). The first author was supported by a PhD grant (FI-2017) from the Agència de Gestió d'Ajuts Universitaris. The second author was supported by Ramón y Cajal contract (RYC-2013-13392) from the Ministerio de Economía y Competitividad.Through complex interactions and feedback processes between coastal ecological and social components at different temporal and spatial scales, coastal environments coproduce a range of ecosystem services (ES) and benefit different social groups. In these highly populated areas, multiple actors, interests, and activities coexist, leading to intensified conflicts between stakeholders. The research presented here aims to understand how coastal social-ecological complexity is studied within coastal ES literature. A systematic review of the literature consisting of 199 manuscripts was performed using the PRISMA method (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). The results show that coastal ES research has been focused on understanding ecological processes for ES provision and value. Hence, coastal ES studies fall short of considering the social components and social-ecological interactions of coastal systems: ES flows, demand, coproduction, power relations, institutions and governance, temporal and spatial scales, value pluralism, uncertainty, and human well-being multidimensions and distribution. The partial integration of social-ecological complexity within coastal ES research limits coastal ES management because nonlinear interactions among social and ecological components are not well understood, particularly stakeholders' relations, their roles, and the links to ES. Finally, we propose a conceptual framework that integrates the gaps identified during the review. The framework places coproduction and power relations as the core factors of assessments of coastal ES, as means to understand complex, nonlinear social-ecological interactions and feedback processes. Hence, it also provides necessary tools to address normative issues of coastal management such as control, access, trade-offs, and benefits

    A Tensor-Based Formulation of Hetero-functional Graph Theory

    Full text link
    Recently, hetero-functional graph theory (HFGT) has developed as a means to mathematically model the structure of large flexible engineering systems. In that regard, it intellectually resembles a fusion of network science and model-based systems engineering. With respect to the former, it relies on multiple graphs as data structures so as to support matrix-based quantitative analysis. In the meantime, HFGT explicitly embodies the heterogeneity of conceptual and ontological constructs found in model-based systems engineering including system form, system function, and system concept. At their foundation, these disparate conceptual constructs suggest multi-dimensional rather than two-dimensional relationships. This paper provides the first tensor-based treatment of some of the most important parts of hetero-functional graph theory. In particular, it addresses the "system concept", the hetero-functional adjacency matrix, and the hetero-functional incidence tensor. The tensor-based formulation described in this work makes a stronger tie between HFGT and its ontological foundations in MBSE. Finally, the tensor-based formulation facilitates an understanding of the relationships between HFGT and multi-layer networks
    corecore