18,504 research outputs found

    Overview of methodologies for building ontologies

    Get PDF
    A few research groups are now proposing a series of steps and methodologies for developing ontologies. However, mainly due to the fact that Ontological Engineering is still a relatively immature discipline, each work group employs its own methodology. Our goal is to present the most representative methodologies used in ontology development and to perform an analysis of such methodologies against the same framework of reference. So, the goal of this paper is not to provide new insights about methodologies, but to put it all in one place and help people to select which methodology to use

    The Knowledge Life Cycle for e-learning

    No full text
    In this paper, we examine the semantic aspects of e-learning from both pedagogical and technological points of view. We suggest that if semantics are to fulfil their potential in the learning domain then a paradigm shift in perspective is necessary, from information-based content delivery to knowledge-based collaborative learning services. We propose a semantics driven Knowledge Life Cycle that characterises the key phases in managing semantics and knowledge, show how this can be applied to the learning domain and demonstrate the value of semantics via an example of knowledge reuse in learning assessment management

    How to Find Suitable Ontologies Using an Ontology-based WWW Broker

    Get PDF
    Knowledge reuse by means of outologies now faces three important problems: (1) there are no standardized identifying features that characterize ontologies from the user point of view; (2) there are no web sites using the same logical organization, presenting relevant information about ontologies; and (3) the search for appropriate ontologies is hard, time-consuming and usually fruitless. To solve the above problems, we present: (1) a living set of features that allow us to characterize ontologies from the user point of view and have the same logical organization; (2) a living domain ontology about ontologies (called ReferenceOntology) that gathers, describes and has links to existing ontologies; and (3) (ONTO)2Agent, the ontology-based www broker about ontologies that uses the Reference Ontology as a source of its knowledge and retrieves descriptions of ontologies that satisfy a given set of constraints. (ONTO)~Agent is available at http://delicias.dia.fi.upm.es/REFERENCE ONTOLOGY

    Ontology (Science)

    Get PDF
    Increasingly, in data-intensive areas of the life sciences, experimental results are being described in algorithmically useful ways with the help of ontologies. Such ontologies are authored and maintained by scientists to support the retrieval, integration and analysis of their data. The proposition to be defended here is that ontologies of this type – the Gene Ontology (GO) being the most conspicuous example – are a _part of science_. Initial evidence for the truth of this proposition (which some will find self-evident) is the increasing recognition of the importance of empirically-based methods of evaluation to the ontology develop¬ment work being undertaken in support of scientific research. Ontologies created by scientists must, of course, be associated with implementations satisfying the requirements of software engineering. But the ontologies are not themselves engineering artifacts, and to conceive them as such brings grievous consequences. Rather, ontologies such as the GO are in different respects comparable to scientific theories, to scientific databases, and to scientific journal publications. Such a view implies a new conception of what is involved in the author¬ing, maintenance and application of ontologies in scientific contexts, and therewith also a new approach to the evaluation of ontologies and to the training of ontologists

    An agent-based architecture for managing the provision of community care - the INCA (Intelligent Community Alarm) experience

    Get PDF
    Community Care is an area that requires extensive cooperation between independent agencies, each of which needs to meet its own objectives and targets. None are engaged solely in the delivery of community care, and need to integrate the service with their other responsibilities in a coherent and efficient manner. Agent technology provides the means by which effective cooperation can take place without compromising the essential security of both the client and the agencies involved as the appropriate set of responses can be generated through negotiation between the parties without the need for access to the main information repositories that would be necessary with conventional collaboration models. The autonomous nature of agents also means that a variety of agents can cooperate together with various local capabilities, so long as they conform to the relevant messaging requirements. This allows a variety of agents, with capabilities tailored to the carers to which they are attached to be developed so that cost-effective solutions can be provided. </p

    Managing healthcare workflows in a multi-agent system environment

    Get PDF
    Whilst Multi-Agent System (MAS) architectures appear to offer a more flexible model for designers and developers of complex, collaborative information systems, implementing real-world business processes that can be delegated to autonomous agents is still a relatively difficult task. Although a range of agent tools and toolkits exist, there still remains the need to move the creation of models nearer to code generation, in order that the development path be more rigorous and repeatable. In particular, it is essential that complex organisational process workflows are captured and expressed in a way that MAS can successfully interpret. Using a complex social care system as an exemplar, we describe a technique whereby a business process is captured, expressed, verified and specified in a suitable format for a healthcare MAS.</p

    Conceptual modeling for requirements of government to citizen service provision

    Get PDF

    An Ontology for Product-Service Systems

    Get PDF
    Industries are transforming their business strategy from a product-centric to a more service-centric nature by bundling products and services into integrated solutions to enhance the relationship between their customers. Since Product- Service Systems design research is currently at a rudimentary stage, the development of a robust ontology for this area would be helpful. The advantages of a standardized ontology are that it could help researchers and practitioners to communicate their views without ambiguity and thus encourage the conception and implementation of useful methods and tools. In this paper, an initial structure of a PSS ontology from the design perspective is proposed and evaluated
    • 

    corecore