29,861 research outputs found

    Towards Analytics Aware Ontology Based Access to Static and Streaming Data (Extended Version)

    Full text link
    Real-time analytics that requires integration and aggregation of heterogeneous and distributed streaming and static data is a typical task in many industrial scenarios such as diagnostics of turbines in Siemens. OBDA approach has a great potential to facilitate such tasks; however, it has a number of limitations in dealing with analytics that restrict its use in important industrial applications. Based on our experience with Siemens, we argue that in order to overcome those limitations OBDA should be extended and become analytics, source, and cost aware. In this work we propose such an extension. In particular, we propose an ontology, mapping, and query language for OBDA, where aggregate and other analytical functions are first class citizens. Moreover, we develop query optimisation techniques that allow to efficiently process analytical tasks over static and streaming data. We implement our approach in a system and evaluate our system with Siemens turbine data

    Ontology as Product-Service System: Lessons Learned from GO, BFO and DOLCE

    Get PDF
    This paper defends a view of the Gene Ontology (GO) and of Basic Formal Ontology (BFO) as examples of what the manufacturing industry calls product-service systems. This means that they are products (the ontologies) bundled with a range of ontology services such as updates, training, help desk, and permanent identifiers. The paper argues that GO and BFO are contrasted in this respect with DOLCE, which approximates more closely to a scientific theory or a scientific publication. The paper provides a detailed overview of ontology services and concludes with a discussion of some implications of the product-service system approach for the understanding of the nature of applied ontology. Ontology developer communities are compared in this respect with developers of scientific theories and of standards (such as W3C). For each of these we can ask: what kinds of products do they develop and what kinds of services do they provide for the users of these products

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Using ontology engineering for understanding needs and allocating resources in web-based industrial virtual collaboration systems

    Get PDF
    In many interactions in cross-industrial and inter-industrial collaboration, analysis and understanding of relative specialist and non-specialist language is one of the most pressing challenges when trying to build multi-party, multi-disciplinary collaboration system. Hence, identifying the scope of the language used and then understanding the relationships between the language entities are key problems. In computer science, ontologies are used to provide a common vocabulary for a domain of interest together with descriptions of the meaning of terms and relationships between them, like in an encyclopedia. These, however, often lack the fuzziness required for human orientated systems. This paper uses an engineering sector business collaboration system (www.wmccm.co.uk) as a case study to illustrate the issues. The purpose of this paper is to introduce a novel ontology engineering methodology, which generates structurally enriched cross domain ontologies economically, quickly and reliably. A semantic relationship analysis of the Google Search Engine Index was devised and evaluated. Using Semantic analysis seems to generate a viable list of subject terms. A social network analysis of the semantically derived terms was conducted to generate a decision support network with rich relationships between terms. The derived ontology was quicker to generate, provided richer internal relationships and relied far less on expert contribution. More importantly, it improved the collaboration matching capability of WMCCM

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    An Approach to Model Checking of Multi-agent Data Analysis

    Full text link
    The paper presents an approach to verification of a multi-agent data analysis algorithm. We base correct simulation of the multi-agent system by a finite integer model. For verification we use model checking tool SPIN. Protocols of agents are written in Promela language and properties of the multi-agent data analysis system are expressed in logic LTL. We run several experiments with SPIN and the model.Comment: In Proceedings MOD* 2014, arXiv:1411.345

    An Ontology for Product-Service Systems

    Get PDF
    Industries are transforming their business strategy from a product-centric to a more service-centric nature by bundling products and services into integrated solutions to enhance the relationship between their customers. Since Product- Service Systems design research is currently at a rudimentary stage, the development of a robust ontology for this area would be helpful. The advantages of a standardized ontology are that it could help researchers and practitioners to communicate their views without ambiguity and thus encourage the conception and implementation of useful methods and tools. In this paper, an initial structure of a PSS ontology from the design perspective is proposed and evaluated

    Ontology mapping: the state of the art

    No full text
    Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping

    Past, present and future of information and knowledge sharing in the construction industry: Towards semantic service-based e-construction

    Get PDF
    The paper reviews product data technology initiatives in the construction sector and provides a synthesis of related ICT industry needs. A comparison between (a) the data centric characteristics of Product Data Technology (PDT) and (b) ontology with a focus on semantics, is given, highlighting the pros and cons of each approach. The paper advocates the migration from data-centric application integration to ontology-based business process support, and proposes inter-enterprise collaboration architectures and frameworks based on semantic services, underpinned by ontology-based knowledge structures. The paper discusses the main reasons behind the low industry take up of product data technology, and proposes a preliminary roadmap for the wide industry diffusion of the proposed approach. In this respect, the paper stresses the value of adopting alliance-based modes of operation
    corecore