139 research outputs found

    HyBIS: Windows Guest Protection through Advanced Memory Introspection

    Full text link
    Effectively protecting the Windows OS is a challenging task, since most implementation details are not publicly known. Windows has always been the main target of malwares that have exploited numerous bugs and vulnerabilities. Recent trusted boot and additional integrity checks have rendered the Windows OS less vulnerable to kernel-level rootkits. Nevertheless, guest Windows Virtual Machines are becoming an increasingly interesting attack target. In this work we introduce and analyze a novel Hypervisor-Based Introspection System (HyBIS) we developed for protecting Windows OSes from malware and rootkits. The HyBIS architecture is motivated and detailed, while targeted experimental results show its effectiveness. Comparison with related work highlights main HyBIS advantages such as: effective semantic introspection, support for 64-bit architectures and for latest Windows (8.x and 10), advanced malware disabling capabilities. We believe the research effort reported here will pave the way to further advances in the security of Windows OSes

    Rootkit Detection Using A Cross-View Clean Boot Method

    Get PDF
    In cyberspace, attackers commonly infect computer systems with malware to gain capabilities such as remote access, keylogging, and stealth. Many malware samples include rootkit functionality to hide attacker activities on the target system. After detection, users can remove the rootkit and associated malware from the system with commercial tools. This research describes, implements, and evaluates a clean boot method using two partitions to detect rootkits on a system. One partition is potentially infected with a rootkit while the other is clean. The method obtains directory listings of the potentially infected operating system from each partition and compares the lists to find hidden files. While the clean boot method is similar to other cross-view detection techniques, this method is unique because it uses a clean partition of the same system as the clean operating system, rather than external media. The method produces a 0% false positive rate and a 40.625% true positive rate. In operation, the true positive rate should increase because the experiment produces limitations that prevent many rootkits from working properly. Limitations such as incorrect rootkit setup and rootkits that detect VMware prevent the method from detecting rootkit behavior in this experiment. Vulnerabilities of the method include the assumption that the system restore folder is clean and the assumption that the clean partition is clean. This thesis provides recommendations for more effective rootkit detection

    Effectiveness of Linux rootkit detection tools

    Get PDF
    Abstract. Rootkits — a type of software that specializes in hiding entities in computer systems while enabling continuous control or access to it — are particularly difficult to detect compared to other kinds of software. Various tools exist for detecting rootkits, utilizing a wide variety of detection techniques and mechanisms. However, the effectiveness of such tools is not well established, especially in contemporary academic research and in the context of the Linux operating system. This study carried out an empirical evaluation of the effectiveness of five tools with capabilities to detect Linux rootkits: OSSEC, AIDE, Rootkit Hunter, Chkrootkit and LKRG. The effectiveness of each tool was tested by injecting 15 publicly available rootkits in individual detection tests in virtual machines running Ubuntu 16.04, executing the detection tool and capturing its results for analysis. A total of 75 detection tests were performed. The results showed that only 37.3% of the detection tests provided any indication of a rootkit infection or suspicious system behaviour, with the rest failing to provide any signs of anomalous behaviour. However, combining the findings of multiple detection tools increased the overall detection rate to 93.3%, as all but a single rootkit were discovered by at least one tool. Variation was observed in the effectiveness of the detection tools, with detection rates ranging from 13.3% to 53.3%. Variation in detection effectiveness was also found between categories of rootkits, as the overall detection rate was 46.7% for user mode rootkits and 31.1% for kernel mode rootkits. Overall, the findings showed that while an individual detection tool‘s effectiveness can be lacking, using a combination of tools considerably increased the likelihood of a successful detection

    MADAM: Effective and Efficient Behavior-based Android Malware Detection and Prevention

    Get PDF
    Android users are constantly threatened by an increasing number of malicious applications (apps), generically called malware. Malware constitutes a serious threat to user privacy, money, device and file integrity. In this paper we note that, by studying their actions, we can classify malware into a small number of behavioral classes, each of which performs a limited set of misbehaviors that characterize them. These misbehaviors can be defined by monitoring features belonging to different Android levels. In this paper we present MADAM, a novel host-based malware detection system for Android devices which simultaneously analyzes and correlates features at four levels: kernel, application, user and package, to detect and stop malicious behaviors. MADAM has been designed to take into account those behaviors characteristics of almost every real malware which can be found in the wild. MADAM detects and effectively blocks more than 96% of malicious apps, which come from three large datasets with about 2,800 apps, by exploiting the cooperation of two parallel classifiers and a behavioral signature-based detector. Extensive experiments, which also includes the analysis of a testbed of 9,804 genuine apps, have been conducted to show the low false alarm rate, the negligible performance overhead and limited battery consumption

    A Study of Rootkit Stealth Techniques and Associated Detection Methods

    Get PDF
    In today\u27s world of advanced computing power at the fingertips of any user, we must constantly think of computer security. Information is power and this power is had within our computer systems. If we cannot trust the information within our computer systems then we cannot properly wield the power that comes from such information. Rootkits are software programs that are designed to develop and maintain an environment in which malware may hide on a computer system after successful compromise of that computer system. Rootkits cut at the very foundation of the trust that we put in our information and subsequent power. This thesis seeks to understand rootkit hiding techniques, rootkit finding techniques and develops attack trees and defense trees in order to help us identify deficiencies in detection to further increase the trust in our information systems

    Ghostware and rootkit detection techniques for windows

    Get PDF
    Cataloged from PDF version of article.Spyware is a significant problem for most computer users. In public, the term spyware is used with the same meaning as adware, a kind of malicious software used for showing advertisements to the user against his will. Spyware programs are also known for their tendency to hide their presence, but advanced stealth techniques used to be either nonexistent or relatively primitive in terms of effectiveness. In other words, most of the spyware programs were efficient at spying but not very efficient at hiding. This made spyware easily detectable with simple file-scanning and registry-scanning techniques. New spyware programs have merged with rootkits and gained stealth abilities, forming spyware with advanced stealth techniques. In this work we focus on this important subclass of spyware, namely ghostware. Ghostware programs hide their resources from the Operating System Application Programming Interfaces that were designed to query and enumerate them. The resources may include files, Windows Registry entries, processes, and loaded modules and files. In this work, we enumerated these hiding techniques and studied the stealth detection methodologies. We also investigated the effectiveness of the hiding techniques against popular anti-virus programs and anti-spyware programs together with publicly available ghostware detection and rootkit detection tools. The results show that, anti-virus programs or anti-spyware programs are not effective for detecting or removing ghostware applications. Hidden object detection or rootkit detection tools can be useful, however, these tools can only work after the computer is infected and they do not provide any means for removing the ghostware. As a result, our work shows the need for understanding the potential dangers and applications of ghostware and implementing new detection and prevention tools.Bozağaç, Cumhur DorukM.S

    Intelligent and behavioral-based detection of malware in IoT spectrum sensors

    Full text link
    The number of Cyber-Physical Systems (CPS) available in industrial environments is growing mainly due to the evolution of the Internet-of-Things (IoT) paradigm. In such a context, radio frequency spectrum sensing in industrial scenarios is one of the most interesting applications of CPS due to the scarcity of the spectrum. Despite the benefits of operational platforms, IoT spectrum sensors are vulnerable to heterogeneous malware. The usage of behavioral fingerprinting and machine learning has shown merit in detecting cyberattacks. Still, there exist challenges in terms of (i) designing, deploying, and evaluating ML-based fingerprinting solutions able to detect malware attacks affecting real IoT spectrum sensors, (ii) analyzing the suitability of kernel events to create stable and precise fingerprints of spectrum sensors, and (iii) detecting recent malware samples affecting real IoT spectrum sensors of crowdsensing platforms. Thus, this work presents a detection framework that applies device behavioral fingerprinting and machine learning to detect anomalies and classify different botnets, rootkits, backdoors, ransomware and cryptojackers affecting real IoT spectrum sensors. Kernel events from CPU, memory, network,file system, scheduler, drivers, and random number generation have been analyzed, selected, and monitored to create device behavioral fingerprints. During testing, an IoT spectrum sensor of the ElectroSense platform has been infected with ten recent malware samples (two botnets, three rootkits, three backdoors, one ransomware, and one cryptojacker) to measure the detection performance of the framework in two different network configurations. Both supervised and semi-supervised approaches provided promising results when detecting and classifying malicious behaviors from the eight previous malware and seven normal behaviors. In particular, the framework obtained 0.88–0.90 true positive rate when detecting the previous malicious behaviors as unseen or zero-day attacks and 0.94–0.96 F1-score when classifying the

    Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump Using CUDA-enabled GPU Hardware

    Get PDF
    This paper focuses on the anticipatory enhancement of methods of detecting stealth software. Cyber security detection tools are insufficiently powerful to reveal the most recent cyber-attacks which use malware. In this paper, we will present first an idea of the highest stealth malware, as this is the most complicated scenario for detection because it combines both existing anti-forensic techniques together with their potential improvements. Second, we will present new detection methods which are resilient to this hidden prototype. To help solve this detection challenge, we have analyzed Windows’ memory content using a new method of Shannon Entropy calculation; methods of digital photogrammetry; the Zipf–Mandelbrot law, as well as by disassembling the memory content and analyzing the output. Finally, we present an idea and architecture of the software tool, which uses CUDA-enabled GPU hardware, to speed-up memory forensics. All three ideas are currently a work in progress. Keywords: rootkit detection, anti-forensics, memory analysis, scattered fragments, anticipatory enhancement, CUDA

    Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump Using CUDA-enabled GPU Hardware

    Get PDF
    This paper focuses on the anticipatory enhancement of methods of detecting stealth software. Cyber security detection tools are insufficiently powerful to reveal the most recent cyber-attacks which use malware. In this paper, we will present first an idea of the highest stealth malware, as this is the most complicated scenario for detection because it combines both existing anti-forensic techniques together with their potential improvements. Second, we present new detection methods, which are resilient to this hidden prototype. To help solve this detection challenge, we have analyzed Windows memory content using a new method of Shannon Entropy calculation; methods of digital photogrammetry; the Zipf Mandelbrot law, as well as by disassembling the memory content and analyzing the output. Finally, we present an idea and architecture of the software tool, which uses CUDA enabled GPU hardware to speed-up memory forensics. All three ideas are currently a work in progress
    • 

    corecore