884 research outputs found

    Scalable Planning and Learning for Multiagent POMDPs: Extended Version

    Get PDF
    Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable approach based on sample-based planning and factored value functions that exploits structure present in many multiagent settings. This approach applies not only in the planning case, but also in the Bayesian reinforcement learning setting. Experimental results show that we are able to provide high quality solutions to large multiagent planning and learning problems

    A principled information valuation for communications during multi-agent coordination

    No full text
    Decentralised coordination in multi-agent systems is typically achieved using communication. However, in many cases, communication is expensive to utilise because there is limited bandwidth, it may be dangerous to communicate, or communication may simply be unavailable at times. In this context, we argue for a rational approach to communication --- if it has a cost, the agents should be able to calculate a value of communicating. By doing this, the agents can balance the need to communicate with the cost of doing so. In this research, we present a novel model of rational communication that uses information theory to value communications, and employ this valuation in a decision theoretic coordination mechanism. A preliminary empirical evaluation of the benefits of this approach is presented in the context of the RoboCupRescue simulator
    corecore