22,504 research outputs found

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Operating theatre modelling: integrating social measures

    Get PDF
    Hospital resource modelling literature is primarily focussed on productivity and efficiency measures. In this paper, our focus is on the alignment of the most valuable revenue factor, the operating room (OR) with the most valuable cost factor, the staff. When aligning these economic and social decisions, respectively, into one sustainable model, simulation results justify the integration of these factors. This research shows that integrating staff decisions and OR decisions results in better solutions for both entities. A discrete event simulation approach is used as a performance test to evaluate an integrated and an iterative model. Experimental analysis show how our integrated approach can benefit the alignment of the planning of the human resources as well as the planning of the capacity of the OR based on both economic related metrics (lead time, overtime, number of patients rejected) and social related metrics (personnel preferences, aversions, roster quality)

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    Integral multidisciplinary rehabilitation treatment planning

    Get PDF
    This paper presents a methodology to plan treatments for rehabilitation outpatients. These patients require a series of treatments by therapists from various disciplines. In current practice, when treatments are planned, a lack of coordination between the different disciplines, along with a failure to plan the entire treatment plan at once, often occurs. This situation jeopardizes both the quality of care and the logistical performance. The multidisciplinary nature of the rehabilitation process complicates planning and control. An integral treatment planning methodology, based on an integer linear programming (ILP) formulation, ensures continuity of the rehabilitation process while simultaneously controlling seven performance indicators including access times, combination appointments, and therapist utilization. We apply our approach to the rehabilitation outpatient clinic of the Academic Medical Center (AMC) in Amsterdam, the Netherlands. Based on the results of this case, we are convinced that our approach can be valuable for decision-making support in resource capacity planning and control at many rehabilitation outpatient clinics. The developed model will be part of the new hospital information system of the AMC

    A survey of health care models that encompass multiple departments

    Get PDF
    In this survey we review quantitative health care models to illustrate the extent to which they encompass multiple hospital departments. The paper provides general overviews of the relationships that exists between major hospital departments and describes how these relationships are accounted for by researchers. We find the atomistic view of hospitals often taken by researchers is partially due to the ambiguity of patient care trajectories. To this end clinical pathways literature is reviewed to illustrate its potential for clarifying patient flows and for providing a holistic hospital perspective

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Analytical models to determine room requirements in outpatient clinics

    Get PDF
    Outpatient clinics traditionally organize processes such that the doctor remains in a consultation room while patients visit for consultation, we call this the Patient-to-Doctor policy (PtD-policy). A different approach is the Doctor-to-Patient policy (DtP-policy), whereby the doctor travels between multiple consultation rooms, in which patients prepare for their consultation. In the latter approach, the doctor saves time by consulting fully prepared patients. We use a queueing theoretic and a discrete-event simulation approach to provide generic models that enable performance evaluations of the two policies for different parameter settings. These models can be used by managers of outpatient clinics to compare the two policies and choose a particular policy when redesigning the patient process.We use the models to analytically show that the DtP-policy is superior to the PtD-policy under the condition that the doctor’s travel time between rooms is lower than the patient’s preparation time. In addition, to calculate the required number of consultation rooms in the DtP-policy, we provide an expression for the fraction of consultations that are in immediate succession; or, in other words, the fraction of time the next patient is prepared and ready, immediately after a doctor finishes a consultation. We apply our methods for a range of distributions and parameters and to a case study in a medium-sized general hospital that inspired this research
    corecore