163 research outputs found

    Enhanced Image-Based Visual Servoing Dealing with Uncertainties

    Get PDF
    Nowadays, the applications of robots in industrial automation have been considerably increased. There is increasing demand for the dexterous and intelligent robots that can work in unstructured environment. Visual servoing has been developed to meet this need by integration of vision sensors into robotic systems. Although there has been significant development in visual servoing, there still exist some challenges in making it fully functional in the industry environment. The nonlinear nature of visual servoing and also system uncertainties are part of the problems affecting the control performance of visual servoing. The projection of 3D image to 2D image which occurs in the camera creates a source of uncertainty in the system. Another source of uncertainty lies in the camera and robot manipulator's parameters. Moreover, limited field of view (FOV) of the camera is another issues influencing the control performance. There are two main types of visual servoing: position-based and image-based. This project aims to develop a series of new methods of image-based visual servoing (IBVS) which can address the nonlinearity and uncertainty issues and improve the visual servoing performance of industrial robots. The first method is an adaptive switch IBVS controller for industrial robots in which the adaptive law deals with the uncertainties of the monocular camera in eye-in-hand configuration. The proposed switch control algorithm decouples the rotational and translational camera motions and decomposes the IBVS control into three separate stages with different gains. This method can increase the system response speed and improve the tracking performance of IBVS while dealing with camera uncertainties. The second method is an image feature reconstruction algorithm based on the Kalman filter which is proposed to handle the situation where the image features go outside the camera's FOV. The combination of the switch controller and the feature reconstruction algorithm can not only improve the system response speed and tracking performance of IBVS, but also can ensure the success of servoing in the case of the feature loss. Next, in order to deal with the external disturbance and uncertainties due to the depth of the features, the third new control method is designed to combine proportional derivative (PD) control with sliding mode control (SMC) on a 6-DOF manipulator. The properly tuned PD controller can ensure the fast tracking performance and SMC can deal with the external disturbance and depth uncertainties. In the last stage of the thesis, the fourth new semi off-line trajectory planning method is developed to perform IBVS tasks for a 6-DOF robotic manipulator system. In this method, the camera's velocity screw is parametrized using time-based profiles. The parameters of the velocity profile are then determined such that the velocity profile takes the robot to its desired position. This is done by minimizing the error between the initial and desired features. The algorithm for planning the orientation of the robot is decoupled from the position planning of the robot. This allows a convex optimization problem which lead to a faster and more efficient algorithm. The merit of the proposed method is that it respects all of the system constraints. This method also considers the limitation caused by camera's FOV. All the developed algorithms in the thesis are validated via tests on a 6-DOF Denso robot in an eye-in-hand configuration

    Visual Servoing

    Get PDF
    The goal of this book is to introduce the visional application by excellent researchers in the world currently and offer the knowledge that can also be applied to another field widely. This book collects the main studies about machine vision currently in the world, and has a powerful persuasion in the applications employed in the machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field. For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and researcher, they can study and learn the chapters, and then employ another application method

    Development and evaluation of automated localization and reconstruction of all fruits on tomato plants in a greenhouse based on multi-view perception and 3D multi-object tracking

    Full text link
    Accurate representation and localization of relevant objects is important for robots to perform tasks. Building a generic representation that can be used across different environments and tasks is not easy, as the relevant objects vary depending on the environment and the task. Furthermore, another challenge arises in agro-food environments due to their complexity, and high levels of clutter and occlusions. In this paper, we present a method to build generic representations in highly occluded agro-food environments using multi-view perception and 3D multi-object tracking. Our representation is built upon a detection algorithm that generates a partial point cloud for each detected object. The detected objects are then passed to a 3D multi-object tracking algorithm that creates and updates the representation over time. The whole process is performed at a rate of 10 Hz. We evaluated the accuracy of the representation on a real-world agro-food environment, where it was able to successfully represent and locate tomatoes in tomato plants despite a high level of occlusion. We were able to estimate the total count of tomatoes with a maximum error of 5.08% and to track tomatoes with a tracking accuracy up to 71.47%. Additionally, we showed that an evaluation using tracking metrics gives more insight in the errors in localizing and representing the fruits.Comment: Pre-print, article submitted and in review proces

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    Image-Guided Robot-Assisted Techniques with Applications in Minimally Invasive Therapy and Cell Biology

    Get PDF
    There are several situations where tasks can be performed better robotically rather than manually. Among these are situations (a) where high accuracy and robustness are required, (b) where difficult or hazardous working conditions exist, and (c) where very large or very small motions or forces are involved. Recent advances in technology have resulted in smaller size robots with higher accuracy and reliability. As a result, robotics is fi nding more and more applications in Biomedical Engineering. Medical Robotics and Cell Micro-Manipulation are two of these applications involving interaction with delicate living organs at very di fferent scales.Availability of a wide range of imaging modalities from ultrasound and X-ray fluoroscopy to high magni cation optical microscopes, makes it possible to use imaging as a powerful means to guide and control robot manipulators. This thesis includes three parts focusing on three applications of Image-Guided Robotics in biomedical engineering, including: Vascular Catheterization: a robotic system was developed to insert a catheter through the vasculature and guide it to a desired point via visual servoing. The system provides shared control with the operator to perform a task semi-automatically or through master-slave control. The system provides control of a catheter tip with high accuracy while reducing X-ray exposure to the clinicians and providing a more ergonomic situation for the cardiologists. Cardiac Catheterization: a master-slave robotic system was developed to perform accurate control of a steerable catheter to touch and ablate faulty regions on the inner walls of a beating heart in order to treat arrhythmia. The system facilitates touching and making contact with a target point in a beating heart chamber through master-slave control with coordinated visual feedback. Live Neuron Micro-Manipulation: a microscope image-guided robotic system was developed to provide shared control over multiple micro-manipulators to touch cell membranes in order to perform patch clamp electrophysiology. Image-guided robot-assisted techniques with master-slave control were implemented for each case to provide shared control between a human operator and a robot. The results show increased accuracy and reduced operation time in all three cases
    corecore