1,714 research outputs found

    Towards Design Principles for Data-Driven Decision Making: An Action Design Research Project in the Maritime Industry

    Get PDF
    Data-driven decision making (DDD) refers to organizational decision-making practices that emphasize the use of data and statistical analysis instead of relying on human judgment only. Various empirical studies provide evidence for the value of DDD, both on individual decision maker level and the organizational level. Yet, the path from data to value is not always an easy one and various organizational and psychological factors mediate and moderate the translation of data-driven insights into better decisions and, subsequently, effective business actions. The current body of academic literature on DDD lacks prescriptive knowledge on how to successfully employ DDD in complex organizational settings. Against this background, this paper reports on an action design research study aimed at designing and implementing IT artifacts for DDD at one of the largest ship engine manufacturers in the world. Our main contribution is a set of design principles highlighting, besides decision quality, the importance of model comprehensibility, domain knowledge, and actionability of results

    Towards the Second-Order Adaptation in the Next Generation Remote Patient Management Systems

    Get PDF
    Remote Patient Management (RPM) systems are expected to be increasingly important for chronic disease management as they facilitate monitoring vital signs of patients at their home, alerting the care givers in case of worsening. They also provide patients with educational content. RPM systems collect a lot of (different types of) data about patients, providing an opportunity for personalizing information services. In our recent work we highlighted the importance of using available information for personalization and presented a possible next generation RPM system that enables personalization of educational content and its delivery to patients. We introduced a generic methodology for personalization and emphasized the role of knowledge discovery (KDD). In this paper we focus on the necessity of the second-order adaptation mechanisms in the RPM systems to address the challenge of continuous on-line (re)learning of actionable patterns from the patient data.

    Towards the second order adaptation in the next generation remote patient management systems

    Get PDF
    Remote Patient Management (RPM) systems are expected to be increasingly important for chronic disease management as they facilitate monitoring vital signs of patients at their home, alerting the care givers in case of worsening. They also provide patients with educational content. RPM systems collect a lot of (different types of) data about patients, providing an opportunity for personalizing information services. In our recent work we highlighted the importance of using available information for personalization and presented a possible next generation RPM system that enables personalization of educational content and its delivery to patients. We introduced a generic methodology for personalization and emphasized the role of knowledge discovery (KDD). In this paper we focus on the necessity of the second-order adaptation mechanisms in the RPM systems to address the challenge of continuous on-line (re)learning of actionable patterns from the patient data

    Hybrid Recommender Systems for Next Purchase Prediction Based on Optimal Combination Weights

    Get PDF
    Recommender systems (RS) play a key role in e-commerce by preselecting presumably interesting products for customers. Hybrid RSs using a weighted average of individual RSs’ predictions have been widely adopted for improving accuracy and robustness over individual RSs. While for regression tasks, approaches to estimate optimal weighting schemes based on individual RSs’ out-of-sample errors exist, there is scant literature in classification settings. Class prediction is important for RSs in e-commerce, as here item purchases are to be predicted. We propose a method for estimating weighting schemes to combine classifying RSs based on the variance-covariance structures of the errors of individual models' probability scores. We evaluate the approach on a large real-world ecommerce data set from a European telecommunications provider, where it shows superior accuracy compared to the best individual model as well as a weighting scheme that averages the predictions using equal weights

    Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications

    Full text link
    There has been a growing interest in model-agnostic methods that can make deep learning models more transparent and explainable to a user. Some researchers recently argued that for a machine to achieve a certain degree of human-level explainability, this machine needs to provide human causally understandable explanations, also known as causability. A specific class of algorithms that have the potential to provide causability are counterfactuals. This paper presents an in-depth systematic review of the diverse existing body of literature on counterfactuals and causability for explainable artificial intelligence. We performed an LDA topic modelling analysis under a PRISMA framework to find the most relevant literature articles. This analysis resulted in a novel taxonomy that considers the grounding theories of the surveyed algorithms, together with their underlying properties and applications in real-world data. This research suggests that current model-agnostic counterfactual algorithms for explainable AI are not grounded on a causal theoretical formalism and, consequently, cannot promote causability to a human decision-maker. Our findings suggest that the explanations derived from major algorithms in the literature provide spurious correlations rather than cause/effects relationships, leading to sub-optimal, erroneous or even biased explanations. This paper also advances the literature with new directions and challenges on promoting causability in model-agnostic approaches for explainable artificial intelligence

    Scalable Techniques for Behavioral Analysis and Forecasting

    Get PDF
    The ability to model, forecast, and analyze the behaviors of other agents has applications in many diverse contexts. For example, behavioral models can be used in multi-player games to forecast an opponent's next move, in economics to forecast a merger decision by a CEO, or in international politics to predict the behavior of a rival state or group. Such models can facilitate formulation of effective mitigating responses and provide a foundation for decision-support technologies. Behavioral modeling is a computationally challenging problem--real world data sets can contain on the order of 10^30,000 possible behaviors in any given situation. This work presents several scalable frameworks for modeling and forecasting agent behavior, particularly in the realm of international security dynamics. A probabilistic logic formalism for modeling and forecasting behavior is described, as well as distributed algorithms for efficient reasoning in this framework. To further cope with the scale of this problem, forecasting methods are also introduced that operate directly on time series data, rather than an intermediate behavioral model, to forecast actions and situations at some time in the future. Agent behavior can be adaptive, and in rare circumstances can deviate from the statistically "normal" past behavior. A system is also presented that can forecast when and how such behavioral changes will occur. These forecasting techniques, as well as any arbitrary time series forecasting approach, can be classified by a general axiomatic framework for forecasting in temporal databases. The knowledge gained from behavioral models and forecasts can be employed by decision-makers to develop effective response policies. An efficient framework is provided for identifying the optimal changes to the state of the world to elicit desired behaviors from another agent, balancing cost with likelihood of success. These modeling and analysis tools have also been incorporated into a prototype decision-support system and used in several case studies of real-world international security situations
    • …
    corecore