23,181 research outputs found

    Image mining: issues, frameworks and techniques

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in significantly large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. Despite the development of many applications and algorithms in the individual research fields cited above, research in image mining is still in its infancy. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining at the end of this paper

    Detecting Visual Relationships with Deep Relational Networks

    Full text link
    Relationships among objects play a crucial role in image understanding. Despite the great success of deep learning techniques in recognizing individual objects, reasoning about the relationships among objects remains a challenging task. Previous methods often treat this as a classification problem, considering each type of relationship (e.g. "ride") or each distinct visual phrase (e.g. "person-ride-horse") as a category. Such approaches are faced with significant difficulties caused by the high diversity of visual appearance for each kind of relationships or the large number of distinct visual phrases. We propose an integrated framework to tackle this problem. At the heart of this framework is the Deep Relational Network, a novel formulation designed specifically for exploiting the statistical dependencies between objects and their relationships. On two large datasets, the proposed method achieves substantial improvement over state-of-the-art.Comment: To be appeared in CVPR 2017 as an oral pape

    Temporal Relational Reasoning in Videos

    Full text link
    Temporal relational reasoning, the ability to link meaningful transformations of objects or entities over time, is a fundamental property of intelligent species. In this paper, we introduce an effective and interpretable network module, the Temporal Relation Network (TRN), designed to learn and reason about temporal dependencies between video frames at multiple time scales. We evaluate TRN-equipped networks on activity recognition tasks using three recent video datasets - Something-Something, Jester, and Charades - which fundamentally depend on temporal relational reasoning. Our results demonstrate that the proposed TRN gives convolutional neural networks a remarkable capacity to discover temporal relations in videos. Through only sparsely sampled video frames, TRN-equipped networks can accurately predict human-object interactions in the Something-Something dataset and identify various human gestures on the Jester dataset with very competitive performance. TRN-equipped networks also outperform two-stream networks and 3D convolution networks in recognizing daily activities in the Charades dataset. Further analyses show that the models learn intuitive and interpretable visual common sense knowledge in videos.Comment: camera-ready version for ECCV'1

    Type-Constrained Representation Learning in Knowledge Graphs

    Full text link
    Large knowledge graphs increasingly add value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. Latent variable models have increasingly gained attention for the statistical modeling of knowledge graphs, showing promising results in tasks related to knowledge graph completion and cleaning. Besides storing facts about the world, schema-based knowledge graphs are backed by rich semantic descriptions of entities and relation-types that allow machines to understand the notion of things and their semantic relationships. In this work, we study how type-constraints can generally support the statistical modeling with latent variable models. More precisely, we integrated prior knowledge in form of type-constraints in various state of the art latent variable approaches. Our experimental results show that prior knowledge on relation-types significantly improves these models up to 77% in link-prediction tasks. The achieved improvements are especially prominent when a low model complexity is enforced, a crucial requirement when these models are applied to very large datasets. Unfortunately, type-constraints are neither always available nor always complete e.g., they can become fuzzy when entities lack proper typing. We show that in these cases, it can be beneficial to apply a local closed-world assumption that approximates the semantics of relation-types based on observations made in the data

    Image mining: trends and developments

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in very large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining

    Broadcasting Convolutional Network for Visual Relational Reasoning

    Full text link
    In this paper, we propose the Broadcasting Convolutional Network (BCN) that extracts key object features from the global field of an entire input image and recognizes their relationship with local features. BCN is a simple network module that collects effective spatial features, embeds location information and broadcasts them to the entire feature maps. We further introduce the Multi-Relational Network (multiRN) that improves the existing Relation Network (RN) by utilizing the BCN module. In pixel-based relation reasoning problems, with the help of BCN, multiRN extends the concept of `pairwise relations' in conventional RNs to `multiwise relations' by relating each object with multiple objects at once. This yields in O(n) complexity for n objects, which is a vast computational gain from RNs that take O(n^2). Through experiments, multiRN has achieved a state-of-the-art performance on CLEVR dataset, which proves the usability of BCN on relation reasoning problems.Comment: Accepted paper at ECCV 2018. 24 page

    Hybrid Approach of Relation Network and Localized Graph Convolutional Filtering for Breast Cancer Subtype Classification

    Full text link
    Network biology has been successfully used to help reveal complex mechanisms of disease, especially cancer. On the other hand, network biology requires in-depth knowledge to construct disease-specific networks, but our current knowledge is very limited even with the recent advances in human cancer biology. Deep learning has shown a great potential to address the difficult situation like this. However, deep learning technologies conventionally use grid-like structured data, thus application of deep learning technologies to the classification of human disease subtypes is yet to be explored. Recently, graph based deep learning techniques have emerged, which becomes an opportunity to leverage analyses in network biology. In this paper, we proposed a hybrid model, which integrates two key components 1) graph convolution neural network (graph CNN) and 2) relation network (RN). We utilize graph CNN as a component to learn expression patterns of cooperative gene community, and RN as a component to learn associations between learned patterns. The proposed model is applied to the PAM50 breast cancer subtype classification task, the standard breast cancer subtype classification of clinical utility. In experiments of both subtype classification and patient survival analysis, our proposed method achieved significantly better performances than existing methods. We believe that this work is an important starting point to realize the upcoming personalized medicine.Comment: 8 pages, To be published in proceeding of IJCAI 201
    corecore