3,401 research outputs found

    Intelligence student advising system - an implementation using object-oriented C++

    Get PDF
    This paper present an approach for developing a consistent student course-advising system for undergraduate students using knowledge-based technology. A prototype system has been implemented in object-oriented technique using C++. The prototype system was designed for undergraduate Computing students. The prototype is able to give consultation and advice on some important aspect of student advising problems. Knowledgeable behaviour was produced where the ‘expert’ and ‘knowledge’ is stored separately from the inference engine. Object-oriented programming technique was found to enhance the development of the system

    Upside-down Deduction

    Get PDF
    Over the recent years, several proposals were made to enhance database systems with automated reasoning. In this article we analyze two such enhancements based on meta-interpretation. We consider on the one hand the theorem prover Satchmo, on the other hand the Alexander and Magic Set methods. Although they achieve different goals and are based on distinct reasoning paradigms, Satchmo and the Alexander or Magic Set methods can be similarly described by upside-down meta-interpreters, i.e., meta-interpreters implementing one reasoning principle in terms of the other. Upside-down meta-interpretation gives rise to simple and efficient implementations, but has not been investigated in the past. This article is devoted to studying this technique. We show that it permits one to inherit a search strategy from an inference engine, instead of implementing it, and to combine bottom-up and top-down reasoning. These properties yield an explanation for the efficiency of Satchmo and a justification for the unconventional approach to top-down reasoning of the Alexander and Magic Set methods

    Attempto - From Specifications in Controlled Natural Language towards Executable Specifications

    Full text link
    Deriving formal specifications from informal requirements is difficult since one has to take into account the disparate conceptual worlds of the application domain and of software development. To bridge the conceptual gap we propose controlled natural language as a textual view on formal specifications in logic. The specification language Attempto Controlled English (ACE) is a subset of natural language that can be accurately and efficiently processed by a computer, but is expressive enough to allow natural usage. The Attempto system translates specifications in ACE into discourse representation structures and into Prolog. The resulting knowledge base can be queried in ACE for verification, and it can be executed for simulation, prototyping and validation of the specification.Comment: 15 pages, compressed, uuencoded Postscript, to be presented at EMISA Workshop 'Naturlichsprachlicher Entwurf von Informationssystemen - Grundlagen, Methoden, Werkzeuge, Anwendungen', May 28-30, 1996, Ev. Akademie Tutzin

    Specifying Logic Programs in Controlled Natural Language

    Full text link
    Writing specifications for computer programs is not easy since one has to take into account the disparate conceptual worlds of the application domain and of software development. To bridge this conceptual gap we propose controlled natural language as a declarative and application-specific specification language. Controlled natural language is a subset of natural language that can be accurately and efficiently processed by a computer, but is expressive enough to allow natural usage by non-specialists. Specifications in controlled natural language are automatically translated into Prolog clauses, hence become formal and executable. The translation uses a definite clause grammar (DCG) enhanced by feature structures. Inter-text references of the specification, e.g. anaphora, are resolved with the help of discourse representation theory (DRT). The generated Prolog clauses are added to a knowledge base. We have implemented a prototypical specification system that successfully processes the specification of a simple automated teller machine.Comment: 16 pages, compressed, uuencoded Postscript, published in Proceedings CLNLP 95, COMPULOGNET/ELSNET/EAGLES Workshop on Computational Logic for Natural Language Processing, Edinburgh, April 3-5, 199

    The nature and evaluation of commercial expert system building tools, revision 1

    Get PDF
    This memorandum reviews the factors that constitute an Expert System Building Tool (ESBT) and evaluates current tools in terms of these factors. Evaluation of these tools is based on their structure and their alternative forms of knowledge representation, inference mechanisms and developer end-user interfaces. Next, functional capabilities, such as diagnosis and design, are related to alternative forms of mechanization. The characteristics and capabilities of existing commercial tools are then reviewed in terms of these criteria

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 90's cannot enjoy an increased level of autonomy without the efficient use of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real time demands are met for large expert systems. Speed-up via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial labs in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems was surveyed. The survey is divided into three major sections: (1) multiprocessors for parallel expert systems; (2) parallel languages for symbolic computations; and (3) measurements of parallelism of expert system. Results to date indicate that the parallelism achieved for these systems is small. In order to obtain greater speed-ups, data parallelism and application parallelism must be exploited
    corecore