6,161 research outputs found

    A Constraint Programming Approach to the Hospitals / Residents Problem

    Get PDF
    An instance I of the Hospitals / Residents problem (HR) involves a set of residents (graduating medical students) and a set of hospitals, where each hospital has a given capacity. The residents have preferences for the hospitals, as do hospitals for residents. A solution of I is a stable matching, which is an assignment of residents to hospitals that respects the capacity conditions and preference lists in a precise way. In this paper we present constraint encodings for HR that give rise to important structural properties. We also present a computational study using both randomly-generated and real-world instances. Our study suggests that Constraint Programming is indeed an applicable technology for solving this problem, in terms of both theory and practice

    A constraint programming approach to the hospitals/residents problem

    Get PDF
    An instance I of the Hospitals/Residents problem (HR) involves a set of residents (graduating medical students) and a set of hospitals, where each hospital has a given capacity. The residents have preferences for the hospitals, as do hospitals for residents. A solution of I is a <i>stable matching</i>, which is an assignment of residents to hospitals that respects the capacity conditions and preference lists in a precise way. In this paper we present constraint encodings for HR that give rise to important structural properties. We also present a computational study using both randomly-generated and real-world instances. We provide additional motivation for our models by indicating how side constraints can be added easily in order to solve hard variants of HR

    Modelling and Solving the Stable Marriage Problem Using Constraint Programming

    Get PDF
    We study the Stable Marriage problem (SM), which is a combinatorial problem that arises in many practical applications. We present two new models of an instance I of SM with n men and n women as an instance J of a Constraint Satisfaction Problem. We prove that establishing arc consistency in J yields the same structure as given by the established Extended Gale/Shapley algorithm for SM as applied to I. Consequently, a solution (stable matching) of I can be derived without search. Furthermore we show that, in both encodings, all stable matchings in I may be enumerated in a failure-free manner. Our first encoding is of O(n^3) complexity and is very natural, whilst our second model, of O(n^2) complexity (which is optimal), is a development of the Boolean encoding in [6], establishing a greater level of structure

    A specialised constraint approach for stable matching problems

    Get PDF
    Constraint programming is a generalised framework designed to solve combinatorial problems. This framework is made up of a set of predefined independent components and generalised algorithms. This is a very versatile structure which allows for a variety of rich combinatorial problems to be represented and solved relatively easily. Stable matching problems consist of a set of participants wishing to be matched into pairs or groups in a stable manner. A matching is said to be stable if there is no pair or group of participants that would rather make a private arrangement to improve their situation and thus undermine the matching. There are many important "real life" applications of stable matching problems across the world. Some of which includes the Hospitals/Residents problem in which a set of graduating medical students, also known as residents, need to be assigned to hospital posts. Some authorities assign children to schools as a stable matching problem. Many other such problems are also tackled as stable matching problems. A number of classical stable matching problems have efficient specialised algorithmic solutions. Constraint programming solutions to stable matching problems have been investigated in the past. These solutions have been able to match the theoretically optimal time complexities of the algorithmic solutions. However, empirical evidence has shown that in reality these constraint solutions run significantly slower than the specialised algorithmic solutions. Furthermore, their memory requirements prohibit them from solving problems which the specialised algorithmic solutions can solve in a fraction of a second. My contribution investigates the possibility of modelling stable matching problems as specialised constraints. The motivation behind this approach was to find solutions to these problems which maintain the versatility of the constraint solutions, whilst significantly reducing the performance gap between constraint and specialised algorithmic solutions. To this end specialised constraint solutions have been developed for the stable marriage problem and the Hospitals/Residents problem. Empirical evidence has been presented which shows that these solutions can solve significantly larger problems than previously published constraint solutions. For these larger problem instances it was seen that the specialised constraint solutions came within a factor of four of the time required by algorithmic solutions. It has also been shown that, through further specialisation, these constraint solutions can be made to run significantly faster. However, these improvements came at the cost of versatility. As a demonstration of the versatility of these solutions it is shown that, by adding simple side constraints, richer problems can be easily modelled. These richer problems add additional criteria and/or an optimisation requirement to the original stable matching problems. Many of these problems have been proven to be NP-Hard and some have no known algorithmic solutions. Included with these models are results from empirical studies which show that these are indeed feasible solutions to the richer problems. Results from the studies also provide some insight into the structure of these problems, some of which have had little or no previous study

    Smith and Rawls Share a Room

    Get PDF
    We consider one-to-one matching (roommate) problems in which agents (students) can either be matched as pairs or remain single. The aim of this paper is twofold. First, we review a key result for roommate problems (the ``lonely wolf'' theorem) for which we provide a concise and elementary proof. Second, and related to the title of this paper, we show how the often incompatible concepts of stability (represented by the political economist Adam Smith) and fairness (represented by the political philosopher John Rawls) can be reconciled for roommate problems.roommate problem, stability, fairness

    Lazy Model Expansion: Interleaving Grounding with Search

    Full text link
    Finding satisfying assignments for the variables involved in a set of constraints can be cast as a (bounded) model generation problem: search for (bounded) models of a theory in some logic. The state-of-the-art approach for bounded model generation for rich knowledge representation languages, like ASP, FO(.) and Zinc, is ground-and-solve: reduce the theory to a ground or propositional one and apply a search algorithm to the resulting theory. An important bottleneck is the blowup of the size of the theory caused by the reduction phase. Lazily grounding the theory during search is a way to overcome this bottleneck. We present a theoretical framework and an implementation in the context of the FO(.) knowledge representation language. Instead of grounding all parts of a theory, justifications are derived for some parts of it. Given a partial assignment for the grounded part of the theory and valid justifications for the formulas of the non-grounded part, the justifications provide a recipe to construct a complete assignment that satisfies the non-grounded part. When a justification for a particular formula becomes invalid during search, a new one is derived; if that fails, the formula is split in a part to be grounded and a part that can be justified. The theoretical framework captures existing approaches for tackling the grounding bottleneck such as lazy clause generation and grounding-on-the-fly, and presents a generalization of the 2-watched literal scheme. We present an algorithm for lazy model expansion and integrate it in a model generator for FO(ID), a language extending first-order logic with inductive definitions. The algorithm is implemented as part of the state-of-the-art FO(ID) Knowledge-Base System IDP. Experimental results illustrate the power and generality of the approach

    Task Assignment with Autonomous and Controlled Agents

    Get PDF
    We analyse assignment problems in which not all agents are controlled by the central planner. The autonomous agents search for vacant tasks guided by their own preference orders defined over subsets of the available tasks. The goal of the central planner is to maximise the total value of the assignment, taking into account the behaviour of the uncontrolled agents. This setting can be found in numerous real-world situations, ranging from organisational economics to "crowdsourcing" and disaster response. We introduce the Disjunctively Constrained Knapsack Game and show that its unique Nash equilibrium reveals the optimal assignment for the controlled agents. This result allows us to find the solution of the problem using mathematical programming techniques.

    Modelling and Solving the Stable Marriage Problem Using Constraint Programming

    Get PDF
    We study the Stable Marriage problem (SM), which is a combinatorial problem that arises in many practical applications. We present two new models of an instance I of SM with n men and n women as an instance J of a Constraint Satisfaction Problem. We prove that establishing arc consistency in J yields the same structure as given by the established Extended Gale/Shapley algorithm for SM as applied to I. Consequently, a solution (stable matching) of I can be derived without search. Furthermore we show that, in both encodings, all stable matchings in I may be enumerated in a failure-free manner. Our first encoding is of O(n^3) complexity and is very natural, whilst our second model, of O(n^2) complexity (which is optimal), is a development of the Boolean encoding in [6], establishing a greater level of structure

    Median Stable Matching for College Admission

    Get PDF
    We give a simple and concise proof that so-called generalized median stable matchings are well-defined stable matchings for college admissions problems. Furthermore, we discuss the fairness properties of median stable matchings and conclude with two illustrative examples of college admissions markets, the lattices of stable matchings, and the corresponding generalized median stable matchings.Matching, College admissions problem, Stability, Fairness.
    corecore