268 research outputs found

    Sigref ā€“ A Symbolic Bisimulation Tool Box

    Get PDF
    We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation. We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description. This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center ā€œAutomatic Verification and Analysis of Complex Systemsā€ (SFB/TR 14 AVACS). See www.avacs.org for more information

    On the properties of discs around accreting brown dwarfs

    Full text link
    We present a grid of models of accreting brown dwarf systems with circumstellar discs. The calculations involve a self-consistent solution of both vertical hydrostatic and radiative equilibrium along with a sophisticated treatment of dust sublimation. We have simulated observations of the spectral energy distributions and several broadband photometric systems. Analysis of the disc structures and simulated observations reveal a natural dichotomy in accretion rates, with \logmdot >āˆ’>-9 and ā‰¤āˆ’\leq -9 classed as extreme and typical accretors respectively. Derivation of ages and masses from our simulated photometry using isochrones is demonstrated to be unreliable even for typical accretors. Although current brown dwarf disc candidate selection criteria have been shown to be largely reliable when applied to our model grid we suggest improved selection criteria in several colour indices. We show that as accretion rates increase brown dwarf disc systems are less likely to be correctly identified. This suggests that, within our grid, systems with higher accretion rates would be preferentially lost during brown dwarf target selection. We suggest that observations used to assert a MĖ™āˆMāˆ—2\dot{M}\propto M_*^2 relationship may contain an intrinsic selection bias.Comment: 13 figures, 2 tables, 2 appendices and 25 pages. Accepted for publication in MNRA

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design ā€“ FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    CUEING: a lightweight model to Capture hUman attEntion In driviNG

    Full text link
    Discrepancies in decision-making between Autonomous Driving Systems (ADS) and human drivers underscore the need for intuitive human gaze predictors to bridge this gap, thereby improving user trust and experience. Existing gaze datasets, despite their value, suffer from noise that hampers effective training. Furthermore, current gaze prediction models exhibit inconsistency across diverse scenarios and demand substantial computational resources, restricting their on-board deployment in autonomous vehicles. We propose a novel adaptive cleansing technique for purging noise from existing gaze datasets, coupled with a robust, lightweight convolutional self-attention gaze prediction model. Our approach not only significantly enhances model generalizability and performance by up to 12.13% but also ensures a remarkable reduction in model complexity by up to 98.2% compared to the state-of-the art, making in-vehicle deployment feasible to augment ADS decision visualization and performance

    Optimized Temporal Monitors for SystemC

    Get PDF
    SystemC is a modeling language built as an extension of C++. Its growing popularity and the increasing complexity of designs have motivated research efforts aimed at the verification of SystemC models using assertion-based verification (ABV), where the designer asserts properties that capture the design intent in a formal language such as PSL or SVA. The model then can be verified against the properties using runtime or formal verification techniques. In this paper we focus on automated generation of runtime monitors from temporal properties. Our focus is on minimizing runtime overhead, rather than monitor size or monitor-generation time. We identify four issues in monitor generation: state minimization, alphabet representation, alphabet minimization, and monitor encoding. We conduct extensive experimentation and identify a combination of settings that offers the best performance in terms of runtime overhead
    • ā€¦
    corecore