1,347 research outputs found

    Iterative Algebraic Soft-Decision List Decoding of Reed-Solomon Codes

    Get PDF
    In this paper, we present an iterative soft-decision decoding algorithm for Reed-Solomon codes offering both complexity and performance advantages over previously known decoding algorithms. Our algorithm is a list decoding algorithm which combines two powerful soft decision decoding techniques which were previously regarded in the literature as competitive, namely, the Koetter-Vardy algebraic soft-decision decoding algorithm and belief-propagation based on adaptive parity check matrices, recently proposed by Jiang and Narayanan. Building on the Jiang-Narayanan algorithm, we present a belief-propagation based algorithm with a significant reduction in computational complexity. We introduce the concept of using a belief-propagation based decoder to enhance the soft-input information prior to decoding with an algebraic soft-decision decoder. Our algorithm can also be viewed as an interpolation multiplicity assignment scheme for algebraic soft-decision decoding of Reed-Solomon codes.Comment: Submitted to IEEE for publication in Jan 200

    Iterative Soft Input Soft Output Decoding of Reed-Solomon Codes by Adapting the Parity Check Matrix

    Full text link
    An iterative algorithm is presented for soft-input-soft-output (SISO) decoding of Reed-Solomon (RS) codes. The proposed iterative algorithm uses the sum product algorithm (SPA) in conjunction with a binary parity check matrix of the RS code. The novelty is in reducing a submatrix of the binary parity check matrix that corresponds to less reliable bits to a sparse nature before the SPA is applied at each iteration. The proposed algorithm can be geometrically interpreted as a two-stage gradient descent with an adaptive potential function. This adaptive procedure is crucial to the convergence behavior of the gradient descent algorithm and, therefore, significantly improves the performance. Simulation results show that the proposed decoding algorithm and its variations provide significant gain over hard decision decoding (HDD) and compare favorably with other popular soft decision decoding methods.Comment: 10 pages, 10 figures, final version accepted by IEEE Trans. on Information Theor

    Symbol level decoding of Reed-Solomon codes with improved reliability information over fading channels

    Get PDF
    A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Electrical and Information Engineering, 2016Reliable and e cient data transmission have been the subject of current research, most especially in realistic channels such as the Rayleigh fading channels. The focus of every new technique is to improve the transmission reliability and to increase the transmission capacity of the communication links for more information to be transmitted. Modulation schemes such as M-ary Quadrature Amplitude Modulation (M-QAM) and Orthogonal Frequency Division Multiplexing (OFDM) were developed to increase the transmission capacity of communication links without additional bandwidth expansion, and to reduce the design complexity of communication systems. On the contrary, due to the varying nature of communication channels, the message transmission reliability is subjected to a couple of factors. These factors include the channel estimation techniques and Forward Error Correction schemes (FEC) used in improving the message reliability. Innumerable channel estimation techniques have been proposed independently, and in combination with di erent FEC schemes in order to improve the message reliability. The emphasis have been to improve the channel estimation performance, bandwidth and power consumption, and the implementation time complexity of the estimation techniques. Of particular interest, FEC schemes such as Reed-Solomon (RS) codes, Turbo codes, Low Density Parity Check (LDPC) codes, Hamming codes, and Permutation codes, are proposed to improve the message transmission reliability of communication links. Turbo and LDPC codes have been used extensively to combat the varying nature of communication channels, most especially in joint iterative channel estimation and decoding receiver structures. In this thesis, attention is focused on using RS codes to improve the message reliability of a communication link because RS codes have good capability of correcting random and burst errors, and are useful in di erent wireless applications. This study concentrates on symbol level soft decision decoding of RS codes. In this regards, a novel symbol level iterative soft decision decoder for RS codes based on parity-check equations is developed. This Parity-check matrix Transformation Algorithm (PTA) is based on the soft reliability information derived from the channel output in order to perform syndrome checks in an iterative process. Performance analysis verify that this developed PTA outperforms the conventional RS hard decision decoding algorithms and the symbol level Koetter and Vardy (KV ) RS soft decision decoding algorithm. In addition, this thesis develops an improved Distance Metric (DM) method of deriving reliability information over Rayleigh fading channels for combined demodulation with symbol level RS soft decision decoding algorithms. The newly proposed DM method incorporates the channel state information in deriving the soft reliability information over Rayleigh fading channels. Analysis verify that this developed metric enhances the performance of symbol level RS soft decision decoders in comparison with the conventional method. Although, in this thesis, the performance of the developed DM method of deriving soft reliability information over Rayleigh fading channels is only veri ed for symbol level RS soft decision decoders, it is applicable to any symbol level soft decision decoding FEC scheme. Besides, the performance of the all FEC decoding schemes plummet as a result of the Rayleigh fading channels. This engender the development of joint iterative channel estimation and decoding receiver structures in order to improve the message reliability, most especially with Turbo and LDPC codes as the FEC schemes. As such, this thesis develops the rst joint iterative channel estimation and Reed- Solomon decoding receiver structure. Essentially, the joint iterative channel estimation and RS decoding receiver is developed based on the existing symbol level soft decision KV algorithm. Consequently, the joint iterative channel estimation and RS decoding receiver is extended to the developed RS parity-check matrix transformation algorithm. The PTA provides design ease and exibility, and lesser computational time complexity in an iterative receiver structure in comparison with the KV algorithm. Generally, the ndings of this thesis are relevant in improving the message transmission reliability of a communication link with RS codes. For instance, it is pertinent to numerous data transmission technologies such as Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB), Digital Subscriber Line (DSL), WiMAX, and long distance satellite communications. Equally, the developed, less computationally intensive, and performance e cient symbol level decoding algorithm for RS codes can be use in consumer technologies like compact disc and digital versatile disc.GS201

    Advanced channel coding techniques using bit-level soft information

    Get PDF
    In this dissertation, advanced channel decoding techniques based on bit-level soft information are studied. Two main approaches are proposed: bit-level probabilistic iterative decoding and bit-level algebraic soft-decision (list) decoding (ASD). In the first part of the dissertation, we first study iterative decoding for high density parity check (HDPC) codes. An iterative decoding algorithm, which uses the sum product algorithm (SPA) in conjunction with a binary parity check matrix adapted in each decoding iteration according to the bit-level reliabilities is proposed. In contrast to the common belief that iterative decoding is not suitable for HDPC codes, this bit-level reliability based adaptation procedure is critical to the conver-gence behavior of iterative decoding for HDPC codes and it significantly improves the iterative decoding performance of Reed-Solomon (RS) codes, whose parity check matrices are in general not sparse. We also present another iterative decoding scheme for cyclic codes by randomly shifting the bit-level reliability values in each iteration. The random shift based adaptation can also prevent iterative decoding from getting stuck with a significant complexity reduction compared with the reliability based parity check matrix adaptation and still provides reasonable good performance for short-length cyclic codes. In the second part of the dissertation, we investigate ASD for RS codes using bit-level soft information. In particular, we show that by carefully incorporating bit¬level soft information in the multiplicity assignment and the interpolation step, ASD can significantly outperform conventional hard decision decoding (HDD) for RS codes with a very small amount of complexity, even though the kernel of ASD is operating at the symbol-level. More importantly, the performance of the proposed bit-level ASD can be tightly upper bounded for practical high rate RS codes, which is in general not possible for other popular ASD schemes. Bit-level soft-decision decoding (SDD) serves as an efficient way to exploit the potential gain of many classical codes, and also facilitates the corresponding per-formance analysis. The proposed bit-level SDD schemes are potential and feasible alternatives to conventional symbol-level HDD schemes in many communication sys-tems

    a simple scheme for belief propagation decoding of bch and rs codes in multimedia transmissions

    Get PDF
    Classic linear block codes, like Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Solomon (RS) codes, are widely used in multimedia transmissions, but their soft-decision decoding still represents an open issue. Among the several approaches proposed for this purpose, an important role is played by the iterative belief propagation principle, whose application to low-density parity-check (LDPC) codes permits to approach the channel capacity. In this paper, we elaborate a new technique for decoding classic binary and nonbinary codes through the belief propagation algorithm. We focus on RS codes included in the recent CDMA2000 standard, and compare the proposed technique with the adaptive belief propagation approach, that is able to ensure very good performance but with higher complexity. Moreover, we consider the case of long BCH codes included in the DVB-S2 standard, for which we show that the usage of "pure" LDPC codes would provide better performance

    On Multiple Decoding Attempts for Reed-Solomon Codes: A Rate-Distortion Approach

    Full text link
    One popular approach to soft-decision decoding of Reed-Solomon (RS) codes is based on using multiple trials of a simple RS decoding algorithm in combination with erasing or flipping a set of symbols or bits in each trial. This paper presents a framework based on rate-distortion (RD) theory to analyze these multiple-decoding algorithms. By defining an appropriate distortion measure between an error pattern and an erasure pattern, the successful decoding condition, for a single errors-and-erasures decoding trial, becomes equivalent to distortion being less than a fixed threshold. Finding the best set of erasure patterns also turns into a covering problem which can be solved asymptotically by rate-distortion theory. Thus, the proposed approach can be used to understand the asymptotic performance-versus-complexity trade-off of multiple errors-and-erasures decoding of RS codes. This initial result is also extended a few directions. The rate-distortion exponent (RDE) is computed to give more precise results for moderate blocklengths. Multiple trials of algebraic soft-decision (ASD) decoding are analyzed using this framework. Analytical and numerical computations of the RD and RDE functions are also presented. Finally, simulation results show that sets of erasure patterns designed using the proposed methods outperform other algorithms with the same number of decoding trials.Comment: to appear in the IEEE Transactions on Information Theory (Special Issue on Facets of Coding Theory: from Algorithms to Networks
    corecore