17,153 research outputs found

    An Iterative Learning Control Design Method for Nonlinear Discrete-Time Systems with Unknown Iteration-Varying Parameters and Control Direction

    Get PDF
    An iterative learning control (ILC) scheme is designed for a class of nonlinear discrete-time dynamical systems with unknown iteration-varying parameters and control direction. The iteration-varying parameters are described by a high-order internal model (HOIM) such that the unknown parameters in the current iteration are a linear combination of the counterparts in the previous certain iterations. Under the framework of ILC, the learning convergence condition is derived through rigorous analysis. It is shown that the adaptive ILC law can achieve perfect tracking of system state in presence of iteration-varying parameters and unknown control direction. The effectiveness of the proposed control scheme is verified by simulations

    Multi-Parametric Extremum Seeking-based Auto-Tuning for Robust Input-Output Linearization Control

    Full text link
    We study in this paper the problem of iterative feedback gains tuning for a class of nonlinear systems. We consider Input-Output linearizable nonlinear systems with additive uncertainties. We first design a nominal Input-Output linearization-based controller that ensures global uniform boundedness of the output tracking error dynamics. Then, we complement the robust controller with a model-free multi-parametric extremum seeking (MES) control to iteratively auto-tune the feedback gains. We analyze the stability of the whole controller, i.e. robust nonlinear controller plus model-free learning algorithm. We use numerical tests to demonstrate the performance of this method on a mechatronics example.Comment: To appear at the IEEE CDC 201

    A 2D systems approach to iterative learning control for discrete linear processes with zero Markov parameters

    No full text
    In this paper a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous con-sideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using Linear Matrix Inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable

    Connections Between Adaptive Control and Optimization in Machine Learning

    Full text link
    This paper demonstrates many immediate connections between adaptive control and optimization methods commonly employed in machine learning. Starting from common output error formulations, similarities in update law modifications are examined. Concepts in stability, performance, and learning, common to both fields are then discussed. Building on the similarities in update laws and common concepts, new intersections and opportunities for improved algorithm analysis are provided. In particular, a specific problem related to higher order learning is solved through insights obtained from these intersections.Comment: 18 page

    Chance-Constrained Trajectory Optimization for Safe Exploration and Learning of Nonlinear Systems

    Get PDF
    Learning-based control algorithms require data collection with abundant supervision for training. Safe exploration algorithms ensure the safety of this data collection process even when only partial knowledge is available. We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained stochastic optimal control with dynamics learning and feedback control. We derive an iterative convex optimization algorithm that solves an \underline{Info}rmation-cost \underline{S}tochastic \underline{N}onlinear \underline{O}ptimal \underline{C}ontrol problem (Info-SNOC). The optimization objective encodes both optimal performance and exploration for learning, and the safety is incorporated as distributionally robust chance constraints. The dynamics are predicted from a robust regression model that is learned from data. The Info-SNOC algorithm is used to compute a sub-optimal pool of safe motion plans that aid in exploration for learning unknown residual dynamics under safety constraints. A stable feedback controller is used to execute the motion plan and collect data for model learning. We prove the safety of rollout from our exploration method and reduction in uncertainty over epochs, thereby guaranteeing the consistency of our learning method. We validate the effectiveness of Info-SNOC by designing and implementing a pool of safe trajectories for a planar robot. We demonstrate that our approach has higher success rate in ensuring safety when compared to a deterministic trajectory optimization approach.Comment: Submitted to RA-L 2020, review-
    • …
    corecore