277 research outputs found

    Improved Layout Structure with Complexity Measures for the Manufacturer’s Pallet Loading Problem (MPLP) Using a Block Approach

    Get PDF
    Purpose: The purpose of this paper is to study the Manufacturers pallet-loading problem (MPLP), by loading identical small boxes onto a rectangle pallet to maximise the pallet utilization percentage while reducing the Complexity of loading. Design/methodology/approach: In this research a Block approach is proposed using a Mixed integer linear programming (MILP) model that generates layouts of an improved structure, which is very effective due to its properties in grouping boxes in a certain orientation along the X and Y axis. Also, a novel complexity index is introduced to compare the complexity for different pallet loading, which have the same pallet size but different box arrangements. Findings: The proposed algorithm has been tested against available data-sets in literature and the complexity measure and graphical layout results clearly demonstrate the superiority of the proposed approach compared with literature Manufacturers pallet-loading problem layouts. Originality/value: This study aids real life manufactures operations when less complex operations are essential to reduce the complexity of pallet loading

    Barge Prioritization, Assignment, and Scheduling During Inland Waterway Disruption Responses

    Get PDF
    Inland waterways face natural and man-made disruptions that may affect navigation and infrastructure operations leading to barge traffic disruptions and economic losses. This dissertation investigates inland waterway disruption responses to intelligently redirect disrupted barges to inland terminals and prioritize offloading while minimizing total cargo value loss. This problem is known in the literature as the cargo prioritization and terminal allocation problem (CPTAP). A previous study formulated the CPTAP as a non-linear integer programming (NLIP) model solved with a genetic algorithm (GA) approach. This dissertation contributes three new and improved approaches to solve the CPTAP. The first approach is a decomposition based sequential heuristic (DBSH) that reduces the time to obtain a response solution by decomposing the CPTAP into separate cargo prioritization, assignment, and scheduling subproblems. The DBSH integrates the Analytic Hierarchy Process and linear programming to prioritize cargo and allocate barges to terminals. Our findings show that compared to the GA approach, the DBSH is more suited to solve large sized decision problems resulting in similar or reduced cargo value loss and drastically improved computational time. The second approach formulates CPTAP as a mixed integer linear programming (MILP) model improved through the addition of valid inequalities (MILP\u27). Due to the complexity of the NLIP, the GA results were validated only for small size instances. This dissertation fills this gap by using the lower bounds of the MILP\u27 model to validate the quality of all prior GA solutions. In addition, a comparison of the MILP\u27 and GA solutions for several real world scenarios show that the MILP\u27 formulation outperforms the NLIP model solved with the GA approach by reducing the total cargo value loss objective. The third approach reformulates the MILP model via Dantzig-Wolfe decomposition and develops an exact method based on branch-and-price technique to solve the model. Previous approaches obtained optimal solutions for instances of the CPTAP that consist of up to five terminals and nine barges. The main contribution of this new approach is the ability to obtain optimal solutions of larger CPTAP instances involving up to ten terminals and thirty barges in reasonable computational time

    Moldable Items Packing Optimization

    Get PDF
    This research has led to the development of two mathematical models to optimize the problem of packing a hybrid mix of rigid and moldable items within a three-dimensional volume. These two developed packing models characterize moldable items from two perspectives: (1) when limited discrete configurations represent the moldable items and (2) when all continuous configurations are available to the model. This optimization scheme is a component of a lean effort that attempts to reduce the lead-time associated with the implementation of dynamic product modifications that imply packing changes. To test the developed models, they are applied to the dynamic packing changes of Meals, Ready-to-Eat (MREs) at two different levels: packing MRE food items in the menu bags and packing menu bags in the boxes. These models optimize the packing volume utilization and provide information for MRE assemblers, enabling them to preplan for packing changes in a short lead-time. The optimization results are validated by running the solutions multiple times to access the consistency of solutions. Autodesk Inventor helps visualize the solutions to communicate the optimized packing solutions with the MRE assemblers for training purposes

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Modelling and Optimisation of Space Allocation and layout Problems

    Get PDF
    This thesis investigates the development of optimisation-based, decision-making frameworks for allocation problems related to manufacturing, warehousing, logistics, and retailing. Since associated costs with these areas constitute significant parts to the overall supply chain cost, mathematical models of enhanced fidelity are required to obtain optimal decisions for i) pallet loading, ii) assortment, and iii) product shelf space, which will be the main research focus of this thesis. For the Manufactures Pallet loading problems (MPLP), novel single- and multi-objective Mixed Integer Linear Programming (MILP) models have been proposed, which generate optimal layouts of improved 2D structure based on a block representation. The approach uses a Complexity Index metric, which aids in comparing 2 pallet layouts that share the same pallet size and number of boxes loaded but with different box arrangements. The proposed algorithm has been tested against available data-sets in literature. In the area of Assortments (optimal 2D packing within given containers) , an iterative MILP algorithm has been developed to provide a diverse set of solutions within pre-specified range of key performance metrics. In addition, a basic software prototype, based on AIMMS platform, has been developed using a user-friendly interface so as to facilitate user interaction with a visual display of the solutions obtained. In Shelf- Space Allocation (SSAP) problem, the relationship between the demand and the retailer shelf space allocated to each item is defined as space elasticity. Most of existing literature considers the problem with stationary demand and fixed space elasticities. In this part of the thesis, a dynamic framework has been proposed to forecast space elasticities based on historical data using standard time-series methodologies. In addition, an optimisation mathematical model has been implemented using the forecasted space elasticities to provide the retailer with optimal shelf space thus resulting into closer match between supply and demand and increased profitability. The applicability and effectiveness of the proposed framework is demonstrated through a number of tests and comparisons against literature data-sets

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled “Optimization for Decision Making II”. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner

    PB-NTP-09

    Get PDF

    How Kano’s Performance Mediates Perceived SERVQUAL Impact on Kansei

    Get PDF
    Through Kansei Engineering (KE) methodology in services, the perceived service quality shows a direct impact on Kansei response. In order to strengthen the KE methodology, Kano model is embedded considering the attractive [A] and one-dimensional [O] performances. However, to what extent the Kano performance brings significant impact on Kansei is questionable and has not been explored yet. It is beneficial to measure the effort spent to improve a certain service attribute, considering the Kano performance and its impact on Kansei. This study on logistics services confirms that the Kano’s attractive category [A] shows the highest impact on Kansei (with loading of 0.502), followed by one-dimensional [O] and must-be [M] ones (with loadings of 0.514 and 0.507), respectively. The service provider should prioritize Kano’s [A] service attributes first for improvement. Keywords - Kano, logistics services, Kansei, SERVQUA

    Applications of the Internet of Things and optimization to inventory and distribution management

    Get PDF
    This thesis is part of the IoFEED (EU funded) project, which aims to monitor approximately 325 farm bins and investigates business processes carried out between farmers and animal feed producers. We propose a computer-aided system to control and optimize the supply chain to deliver animal feed to livestock farms. Orders can be of multiple types of feed, shipped from multiple depots using a fleet of heterogeneous vehicles with multiple compartments. Additionally, this case considers some business-specific constraints, such as product compatibility, facility accessibility restrictions, prioritized locations, or bio-security constraints. A digital twin based approach is implemented at the farm level by installing sensors to remotely measure the inventories. This thesis also embraces these sensors' design and manufacturing process, seeking the required precision and easy deployability at scale. Our approach combines biased-randomization techniques with a simheuristic framework to make use of data provided by the sensors. The analysis of results is based on these two real pilots, and showcases the insights obtained during the IoFEED project. The results of this thesis show how the Internet of Things and simulation-based optimization methods combine successfully to optimize deliveries of feed to livestock farms.Esta tesis forma parte del proyecto IoFeeD, financiado por la Unión Europea, que tiene como objetivo monitorizar remotamente el stock de 325 contenedores agrícolas e investigar los procesos comerciales llevados a cabo entre agricultores y productores de pienso. Proponemos un sistema de ayuda a la toma de decisiones para controlar y optimizar la cadena de suministro de pienso en las explotaciones ganaderas. Los pedidos pueden ser de varios tipos de pienso y pueden enviarse desde varios centros de fabricación mediante el uso de una flota de vehículos heterogéneos con varios compartimentos. Además, se tienen en cuenta algunas restricciones específicas de la empresa, como, por ejemplo, la compatibilidad del producto, las restricciones de accesibilidad en las instalaciones, las ubicaciones priorizadas o las restricciones de bioseguridad. A escala de granja, se implementa un enfoque basado en gemelos digitales mediante la instalación de sensores para medir los inventarios de forma remota. En el marco de esta tesis, se desarrollan estos sensores buscando la precisión requerida, así como las características oportunas que permitan su instalación a gran escala. Nuestro enfoque combina técnicas de aleatorización sesgada con un marco simheurístico para hacer uso de los datos proporcionados por los sensores. El análisis de los resultados se basa en estos dos pilotos reales y muestra las ideas obtenidas durante el proyecto IoFeeD. Los resultados de esta tesis muestran cómo la internet de las cosas y los métodos de optimización basados en simulación se combinan con éxito para optimizar las operaciones de suministro de pienso para el consumo animal en las explotaciones ganaderas.Aquesta tesi forma part del projecte IoFeeD, finançat per la Unió Europea, que té com a objectiu controlar remotament l'estoc de 325 sitges i investigar els processos de negoci duts a terme entre agricultors i productors de pinso. Proposem un sistema d'ajuda a la presa de decisions per controlar i optimitzar la cadena de subministrament de pinso a les explotacions ramaderes. Les comandes poden ser de diversos tipus de pinso i es poden enviar des de diversos centres de fabricació mitjançant l'ús d'una flota de vehicles heterogenis amb diversos compartiments. A més, es tenen en compte algunes restriccions específiques de l'empresa, com ara la compatibilitat del producte, les restriccions d'accessibilitat a les instal·lacions, les ubicacions prioritzades o les restriccions de bioseguretat. A escala de granja, s'implementa un enfocament basat en bessons digitals mitjançant la instal·lació de sensors per mesurar remotament els inventaris. En el marc de la tesi, es desenvolupa aquest sensor cercant la precisió requerida i les característiques oportunes que en permetin la instal·lació a gran escala. El nostre enfocament combina tècniques d'aleatorització esbiaixada amb un marc simheurístic per fer ús de les dades proporcionades pels sensors. L'anàlisi dels resultats es basa en aquests dos pilots reals i mostra les idees obtingudes durant el projecte IoFeeD. Els resultats d'aquesta tesi mostren com la internet de les coses i els mètodes d'optimització basats en simulació es combinen amb èxit per optimitzar les operacions de subministrament de pinso per al consum animal a les explotacions ramaderes.Tecnologies de la informació i de xarxe
    corecore