181 research outputs found

    PWM Harmonic Signature Based Islanding Detection for a Single-Phase Inverter with PWM Frequency Hopping

    Get PDF
    Distributed generation (DG) has gained popularity in recent years due to the increasing requirement for renewable power sources. A problem that exists with DG systems is the islanding of DG units that creates safety issues for personnel as well as the potential for damage to utility infrastructure. Therefore, islanding detection methods are utilized to mitigate the risk of islanded operation of DG units. A new passive method of islanding detection based on the signature of the PWM voltage harmonics is proposed. The viability of the algorithm is investigated with the use of an analytical and time domain model of the inverter and further validated with experimental results. Furthermore, an extension of the detection scheme is proposed for use in multiinverter scenarios composed of adaptive frequency hopping to eliminate unwanted tripping

    Anti-Islanding Protection of PV-based Microgrids Consisting of PHEVs using SVMs

    Get PDF

    Smart Distributed Generation System Event Classification using Recurrent Neural Network-based Long Short-term Memory

    Get PDF
    High penetration of distributed generation (DG) sources into a decentralized power system causes several disturbances, making the monitoring and operation control of the system complicated. Moreover, because of being passive, modern DG systems are unable to detect and inform about these disturbances related to power quality in an intelligent approach. This paper proposed an intelligent and novel technique, capable of making real-time decisions on the occurrence of different DG events such as islanding, capacitor switching, unsymmetrical faults, load switching, and loss of parallel feeder and distinguishing these events from the normal mode of operation. This event classification technique was designed to diagnose the distinctive pattern of the time-domain signal representing a measured electrical parameter, like the voltage, at DG point of common coupling (PCC) during such events. Then different power system events were classified into their root causes using long short-term memory (LSTM), which is a deep learning algorithm for time sequence to label classification. A total of 1100 events showcasing islanding, faults, and other DG events were generated based on the model of a smart distributed generation system using a MATLAB/Simulink environment. Classifier performance was calculated using 5-fold cross-validation. The genetic algorithm (GA) was used to determine the optimum value of classification hyper-parameters and the best combination of features. The simulation results indicated that the events were classified with high precision and specificity with ten cycles of occurrences while achieving a 99.17% validation accuracy. The performance of the proposed classification technique does not degrade with the presence of noise in test data, multiple DG sources in the model, and inclusion of motor starting event in training samples

    AN INTELLIGENT PASSIVE ISLANDING DETECTION AND CLASSIFICATION SCHEME FOR A RADIAL DISTRIBUTION SYSTEM

    Get PDF
    Distributed generation (DG) provides users with a dependable and cost-effective source of electricity. These are directly connected to the distribution system at customer load locations. Integration of DG units into an existing system has significantly high importance due to its innumerable advantages. The high penetration level of distributed generation (DG) provides vast techno-economic and environmental benefits, such as high reliability, reduced total system losses, efficiency, low capital cost, abundant in nature, and low carbon emissions. However, one of the most challenges in microgrids (MG) is the island mode operations of DGs. the effective detection of islanding and rapid DG disconnection is essential to prevent safety problems and equipment damage. The most prevalent islanding protection scheme is based on passive techniques that cause no disruption to the system but have extensive non-detection zones. As a result, the thesis tries to design a simple and effective intelligent passive islanding detection approach using a CatBoost classifier, as well as features collected from three-phase voltages and instantaneous power per phase visible at the DG terminal. This approach enables initial features to be extracted using the Gabor transform (GT) technique. This signal processing (SP) technique illustrates the time-frequency representation of the signal, revealing several hidden features of the processed signals to be the input of the intelligent classifier. A radial distribution system with two DG units was utilized to evaluate the effectiveness of the proposed islanding detection method. The effectiveness of the proposed islanding detection method was verified by comparing its results to those of other methods that use a random forest (RF) or a basic artificial neural network (ANN) as a classifier. This was accomplished through extensive simulations using the DigSILENT Power Factory® software. Several measures are available, including accuracy (F1 Score), the area under the curve (AUC), and training time. The suggested technique has a classification accuracy of 97.1 per cent for both islanded and non-islanded events. However, the RF and ANN classifiers\u27 accuracies for islanding and non-islanding events, respectively, are proven to be 94.23 and 54.8 per cent, respectively. In terms of the training time, the ANN, RF, and CatBoost classifiers have training times of 1.4 seconds, 1.21 seconds, and 0.88 seconds, respectively. The detection time for all methods was less than one cycle. These metrics demonstrate that the suggested strategy is robust and capable of distinguishing between the islanding event and other system disruptions

    A fuzzy-based hybrid PLL scheme for abnormal grid conditions

    Get PDF

    Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above

    Study on the effectiveness of commercial anti‐islanding algorithms in the prospect of mass penetration of PVs in low‐voltage distribution networks

    Get PDF
    In the coming years, distribution grids will be progressively flooded by renewable energy sources (RES) that will be interconnected with the main grid through power electronic converters. Photovoltaics (PVs) are one of the most promising renewable technologies even for densely built-up areas where space problems are inevitable. The high penetration prospect of PV facilities on low-voltage distribution networks raises questions regarding the necessity of advanced functions that will enable electronically coupled RES to support the operation of distribution grids and to enhance their reliability. In this context, the objective of this study is to investigate the effectiveness of various islanding prevention measures installed in commercial PV inverters, when multiple inverters are operating in parallel with a low-voltage distribution network (LVDN). Extensive experiments were performed under various PV penetration levels, linear/non-linear load and over/under voltage and over/under frequency conditions, as well as for various values of total harmonic distortion of the mains voltage. Further to the primary statistical analysis, the results were analysed in depth by advanced mathematical methods such as box plot and cluster analysis. The findings of this study indicate that commercial anti-islanding techniques present a high probability of failure in the case of multiple PV units at the same point of common coupling, calling for new and more advanced algorithms.European Commission, H2020, 65411

    Co-design of Security Aware Power System Distribution Architecture as Cyber Physical System

    Get PDF
    The modern smart grid would involve deep integration between measurement nodes, communication systems, artificial intelligence, power electronics and distributed resources. On one hand, this type of integration can dramatically improve the grid performance and efficiency, but on the other, it can also introduce new types of vulnerabilities to the grid. To obtain the best performance, while minimizing the risk of vulnerabilities, the physical power system must be designed as a security aware system. In this dissertation, an interoperability and communication framework for microgrid control and Cyber Physical system enhancements is designed and implemented taking into account cyber and physical security aspects. The proposed data-centric interoperability layer provides a common data bus and a resilient control network for seamless integration of distributed energy resources. In addition, a synchronized measurement network and advanced metering infrastructure were developed to provide real-time monitoring for active distribution networks. A hybrid hardware/software testbed environment was developed to represent the smart grid as a cyber-physical system through hardware and software in the loop simulation methods. In addition it provides a flexible interface for remote integration and experimentation of attack scenarios. The work in this dissertation utilizes communication technologies to enhance the performance of the DC microgrids and distribution networks by extending the application of the GPS synchronization to the DC Networks. GPS synchronization allows the operation of distributed DC-DC converters as an interleaved converters system. Along with the GPS synchronization, carrier extraction synchronization technique was developed to improve the system’s security and reliability in the case of GPS signal spoofing or jamming. To improve the integration of the microgrid with the utility system, new synchronization and islanding detection algorithms were developed. The developed algorithms overcome the problem of SCADA and PMU based islanding detection methods such as communication failure and frequency stability. In addition, a real-time energy management system with online optimization was developed to manage the energy resources within the microgrid. The security and privacy were also addressed in both the cyber and physical levels. For the physical design, two techniques were developed to address the physical privacy issues by changing the current and electromagnetic signature. For the cyber level, a security mechanism for IEC 61850 GOOSE messages was developed to address the security shortcomings in the standard
    corecore