831 research outputs found

    An analysis of the Taguchi method for tuning a memetic algorithm with reduced computational time budget

    Get PDF
    Determining the best initial parameter values for an algorithm, called parameter tuning, is crucial to obtaining better algorithm performance; however, it is often a time-consuming task and needs to be performed under a restricted computational budget. In this study, the results from our previous work on using the Taguchi method to tune the parameters of a memetic algorithm for cross-domain search are further analysed and extended. Although the Taguchi method reduces the time spent finding a good parameter value combination by running a smaller size of experiments on the training instances from different domains as opposed to evaluating all combinations, the time budget is still larger than desired. This work investigates the degree to which it is possible to predict the same good parameter setting faster by using a reduced time budget. The results in this paper show that it was possible to predict good combinations of parameter settings with a much reduced time budget. The good final parameter values are predicted for three of the parameters, while for the fourth parameter there is no clear best value, so one of three similarly performing values is identified at each time instant

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances

    Genetic Transfer or Population Diversification? Deciphering the Secret Ingredients of Evolutionary Multitask Optimization

    Full text link
    Evolutionary multitasking has recently emerged as a novel paradigm that enables the similarities and/or latent complementarities (if present) between distinct optimization tasks to be exploited in an autonomous manner simply by solving them together with a unified solution representation scheme. An important matter underpinning future algorithmic advancements is to develop a better understanding of the driving force behind successful multitask problem-solving. In this regard, two (seemingly disparate) ideas have been put forward, namely, (a) implicit genetic transfer as the key ingredient facilitating the exchange of high-quality genetic material across tasks, and (b) population diversification resulting in effective global search of the unified search space encompassing all tasks. In this paper, we present some empirical results that provide a clearer picture of the relationship between the two aforementioned propositions. For the numerical experiments we make use of Sudoku puzzles as case studies, mainly because of their feature that outwardly unlike puzzle statements can often have nearly identical final solutions. The experiments reveal that while on many occasions genetic transfer and population diversity may be viewed as two sides of the same coin, the wider implication of genetic transfer, as shall be shown herein, captures the true essence of evolutionary multitasking to the fullest.Comment: 7 pages, 6 figure

    Resilient Bioinspired Algorithms: A Computer System Design Perspective

    Get PDF
    This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in Cotta, C., Olague, G. (2022). Resilient Bioinspired Algorithms: A Computer System Design Perspective. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_39Resilience can be defined as a system's capability for returning to normal operation after having suffered a disruption. This notion is of the foremost interest in many areas, in particular engineering. We argue in this position paper that is is a crucial property for bioinspired optimization algorithms as well. Following a computer system perspective, we correlate some of the defining requirements for attaining resilient systems to issues, features, and mechanisms of these techniques. It is shown that bioinspired algorithms do not only exhibit a notorious built-in resilience, but that their plasticity also allows accommodating components that may boost it in different ways. We also provide some relevant research directions in this area.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    open access articleThis article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    An investigation of F-Race training strategies for cross domain optimisation with memetic algorithms

    Get PDF
    Parameter tuning is a challenging and time-consuming task, crucial to obtaining improved metaheuristic performance. There is growing interest in cross-domain search methods, which consider a range of optimisation problems rather than being specialised for a single domain. Metaheuristics and hyper-heuristics are typically used as high-level cross-domain search methods, utilising problem-specific low-level heuristics for each problem domain to modify a solution. Such methods have a number of parameters to control their behaviour, whose initial settings can influence their search behaviour significantly. Previous methods in the literature either fix these parameters based on previous experience, or set them specifically for particular problem instances. There is a lack of extensive research investigating the tuning of these parameters systematically. In this paper, F-Race is deployed as an automated cross-domain parameter tuning approach. The parameters of a steady-state memetic algorithm and the low-level heuristics used by this algorithm are tuned across nine single-objective problem domains, using different training strategies and budgets to investigate whether F-Race is capable of effectively tuning parameters for cross-domain search. The empirical results show that the proposed methods manage to find good parameter settings, outperforming many methods from the literature, with different configurations identified as the best depending upon the training approach used

    Hybrid metaheuristics for solving multi-depot pickup and delivery problems

    Get PDF
    In today's logistics businesses, increasing petrol prices, fierce competition, dynamic business environments and volume volatility put pressure on logistics service providers (LSPs) or third party logistics providers (3PLs) to be efficient, differentiated, adaptive, and horizontally collaborative in order to survive and remain competitive. In this climate, efficient computerised-decision support tools play an essential role. Especially, for freight transportation, e efficiently solving a Pickup and Delivery Problem (PDP) and its variants by an optimisation engine is the core capability required in making operational planning and decisions. For PDPs, it is required to determine minimum-cost routes to serve a number of requests, each associated with paired pickup and delivery points. A robust solution method for solving PDPs is crucial to the success of implementing decision support tools, which are integrated with Geographic Information System (GIS) and Fleet Telematics so that the flexibility, agility, visibility and transparency are fulfilled. If these tools are effectively implemented, competitive advantage can be gained in the area of cost leadership and service differentiation. In this research, variants of PDPs, which multiple depots or providers are considered, are investigated. These are so called Multi-depot Pickup and Delivery Problems (MDPDPs). To increase geographical coverage, continue growth and encourage horizontal collaboration, efficiently solving the MDPDPs is vital to operational planning and its total costs. This research deals with designing optimisation algorithms for solving a variety of real-world applications. Mixed Integer Linear Programming (MILP) formulations of the MDPDPs are presented. Due to being NP-hard, the computational time for solving by exact methods becomes prohibitive. Several metaheuristics and hybrid metaheuristics are investigated in this thesis. The extensive computational experiments are carried out to demonstrate their speed, preciseness and robustness.Open Acces

    Evolutionary approaches for feature selection in biological data

    Get PDF
    Data mining techniques have been used widely in many areas such as business, science, engineering and medicine. The techniques allow a vast amount of data to be explored in order to extract useful information from the data. One of the foci in the health area is finding interesting biomarkers from biomedical data. Mass throughput data generated from microarrays and mass spectrometry from biological samples are high dimensional and is small in sample size. Examples include DNA microarray datasets with up to 500,000 genes and mass spectrometry data with 300,000 m/z values. While the availability of such datasets can aid in the development of techniques/drugs to improve diagnosis and treatment of diseases, a major challenge involves its analysis to extract useful and meaningful information. The aims of this project are: 1) to investigate and develop feature selection algorithms that incorporate various evolutionary strategies, 2) using the developed algorithms to find the “most relevant” biomarkers contained in biological datasets and 3) and evaluate the goodness of extracted feature subsets for relevance (examined in terms of existing biomedical domain knowledge and from classification accuracy obtained using different classifiers). The project aims to generate good predictive models for classifying diseased samples from control
    corecore