5,138 research outputs found

    A study of deep neural networks for human activity recognition

    Get PDF
    Human activity recognition and deep learning are two fields that have attracted attention in recent years. The former due to its relevance in many application domains, such as ambient assisted living or health monitoring, and the latter for its recent and excellent performance achievements in different domains of application such as image and speech recognition. In this article, an extensive analysis among the most suited deep learning architectures for activity recognition is conducted to compare its performance in terms of accuracy, speed, and memory requirements. In particular, convolutional neural networks (CNN), long short‐term memory networks (LSTM), bidirectional LSTM (biLSTM), gated recurrent unit networks (GRU), and deep belief networks (DBN) have been tested on a total of 10 publicly available datasets, with different sensors, sets of activities, and sampling rates. All tests have been designed under a multimodal approach to take advantage of synchronized raw sensor' signals. Results show that CNNs are efficient at capturing local temporal dependencies of activity signals, as well as at identifying correlations among sensors. Their performance in activity classification is comparable with, and in most cases better than, the performance of recurrent models. Their faster response and lower memory footprint make them the architecture of choice for wearable and IoT devices

    Human behavior understanding for worker-centered intelligent manufacturing

    Get PDF
    “In a worker-centered intelligent manufacturing system, sensing and understanding of the worker’s behavior are the primary tasks, which are essential for automatic performance evaluation & optimization, intelligent training & assistance, and human-robot collaboration. In this study, a worker-centered training & assistant system is proposed for intelligent manufacturing, which is featured with self-awareness and active-guidance. To understand the hand behavior, a method is proposed for complex hand gesture recognition using Convolutional Neural Networks (CNN) with multiview augmentation and inference fusion, from depth images captured by Microsoft Kinect. To sense and understand the worker in a more comprehensive way, a multi-modal approach is proposed for worker activity recognition using Inertial Measurement Unit (IMU) signals obtained from a Myo armband and videos from a visual camera. To automatically learn the importance of different sensors, a novel attention-based approach is proposed to human activity recognition using multiple IMU sensors worn at different body locations. To deploy the developed algorithms to the factory floor, a real-time assembly operation recognition system is proposed with fog computing and transfer learning. The proposed worker-centered training & assistant system has been validated and demonstrated the feasibility and great potential for applying to the manufacturing industry for frontline workers. Our developed approaches have been evaluated: 1) the multi-view approach outperforms the state-of-the-arts on two public benchmark datasets, 2) the multi-modal approach achieves an accuracy of 97% on a worker activity dataset including 6 activities and achieves the best performance on a public dataset, 3) the attention-based method outperforms the state-of-the-art methods on five publicly available datasets, and 4) the developed transfer learning model achieves a real-time recognition accuracy of 95% on a dataset including 10 worker operations”--Abstract, page iv
    corecore