33,042 research outputs found

    Driving and Driven Architectures of Directed Small-World Human Brain Functional Networks

    Get PDF
    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome

    Lagged and instantaneous dynamical influences related to brain structural connectivity

    Get PDF
    Contemporary neuroimaging methods can shed light on the basis of human neural and cognitive specializations, with important implications for neuroscience and medicine. Different MRI acquisitions provide different brain networks at the macroscale; whilst diffusion-weighted MRI (dMRI) provides a structural connectivity (SC) coincident with the bundles of parallel fibers between brain areas, functional MRI (fMRI) accounts for the variations in the blood-oxygenation-level-dependent T2* signal, providing functional connectivity (FC).Understanding the precise relation between FC and SC, that is, between brain dynamics and structure, is still a challenge for neuroscience. To investigate this problem, we acquired data at rest and built the corresponding SC (with matrix elements corresponding to the fiber number between brain areas) to be compared with FC connectivity matrices obtained by 3 different methods: directed dependencies by an exploratory version of structural equation modeling (eSEM), linear correlations (C) and partial correlations (PC). We also considered the possibility of using lagged correlations in time series; so, we compared a lagged version of eSEM and Granger causality (GC). Our results were two-fold: firstly, eSEM performance in correlating with SC was comparable to those obtained from C and PC, but eSEM (not C nor PC) provides information about directionality of the functional interactions. Second, interactions on a time scale much smaller than the sampling time, captured by instantaneous connectivity methods, are much more related to SC than slow directed influences captured by the lagged analysis. Indeed the performance in correlating with SC was much worse for GC and for the lagged version of eSEM. We expect these results to supply further insights to the interplay between SC and functional patterns, an important issue in the study of brain physiology and function.Comment: Accepted and published in Frontiers in Psychology in its current form. 27 pages, 1 table, 5 figures, 2 suppl. figure

    Investigating White Matter Lesion Load, Intrinsic Functional Connectivity, and Cognitive Abilities in Older Adults

    Get PDF
    Changes to the while matter of the brain disrupt neural communication between spatially distributed brain regions and are associated with cognitive changes in later life. While approximately 95% of older adults experience these brain changes, not everyone who has significant white matter damage displays cognitive impairment. Few studies have investigated the association between white matter changes and cognition in the context of functional brain network integrity. This study used a data-driven, multivariate analytical model to investigate intrinsic functional connectivity patterns associated with individual variability in white matter lesion load as related to fluid and crystallized intelligence in a sample of healthy older adults (n = 84). Several primary findings were noted. First, a reliable pattern emerged associating whole-brain resting-state functional connectivity with individual variability in measures of white matter lesion load, as indexed by total white matter lesion volume and number of lesions. Secondly, white matter lesion load was associated with increased network disintegration and dedifferentiation. Specifically, lower white matter lesion load was associated with greater within- versus between-network connectivity. Higher white matter lesion load was associated with greater between-network connectivity compared to within. These associations between intrinsic functional connectivity and white matter lesion load were not reliably associated with crystallized and fluid intelligence performance. These results suggest that changes to the white matter of the brain in typically aging older adults are characterized by increased functional brain network dedifferentiation. The findings highlight the role of white matter lesion load in altering the functional network architecture of the brain

    Altered intrinsic organisation of brain networks implicated in attentional processes in adult attention-deficit/hyperactivity disorder: a resting state study of attention, default mode and salience network connectivity

    Get PDF
    Deficits in task-related attentional engagement in attention-deficit/hyperactivity disorder (ADHD) have been hypothesized to be due to altered interrelationships between attention, default mode and salience networks. We examined the intrinsic connectivity during rest within and between these networks. Six minutes resting state scans were obtained. Using a network-based approach, connectivity within and between the dorsal and ventral attention, the default mode and the salience networks was compared between the ADHD and control group. The ADHD group displayed hyperconnectivity between the two attention networks and within the default mode and ventral attention network. The salience network was hypoconnected to the dorsal attention network. There were trends towards hyperconnectivity within the dorsal attention network and between the salience and ventral attention network in ADHD. Connectivity within and between other networks was unrelated to ADHD. Our findings highlight the altered connectivity within and between attention networks, and between them and the salience network in ADHD. One hypothesis to be tested in future studies is that individuals with ADHD are affected by an imbalance between ventral and dorsal attention systems with the former playing a dominant role during task engagement making individuals with ADHD highly susceptible to distraction by salient task-irrelevant stimuli

    Centralized and distributed cognitive task processing in the human connectome

    Get PDF
    A key question in modern neuroscience is how cognitive changes in a human brain can be quantified and captured by functional connectomes (FC) . A systematic approach to measure pairwise functional distance at different brain states is lacking. This would provide a straight-forward way to quantify differences in cognitive processing across tasks; also, it would help in relating these differences in task-based FCs to the underlying structural network. Here we propose a framework, based on the concept of Jensen-Shannon divergence, to map the task-rest connectivity distance between tasks and resting-state FC. We show how this information theoretical measure allows for quantifying connectivity changes in distributed and centralized processing in functional networks. We study resting-state and seven tasks from the Human Connectome Project dataset to obtain the most distant links across tasks. We investigate how these changes are associated to different functional brain networks, and use the proposed measure to infer changes in the information processing regimes. Furthermore, we show how the FC distance from resting state is shaped by structural connectivity, and to what extent this relationship depends on the task. This framework provides a well grounded mathematical quantification of connectivity changes associated to cognitive processing in large-scale brain networks.Comment: 22 pages main, 6 pages supplementary, 6 figures, 5 supplementary figures, 1 table, 1 supplementary table. arXiv admin note: text overlap with arXiv:1710.0219

    Resting-State Functional Connectivity in Late-Life Depression: Higher Global Connectivity and More Long Distance Connections

    Full text link
    Functional magnetic resonance imaging recordings in the resting-state (RS) from the human brain are characterized by spontaneous low-frequency fluctuations in the blood oxygenation level dependent signal that reveal functional connectivity (FC) via their spatial synchronicity. This RS study applied network analysis to compare FC between late-life depression (LLD) patients and control subjects. Raw cross-correlation matrices (CM) for LLD were characterized by higher FC. We analyzed the small-world (SW) and modular organization of these networks consisting of 110 nodes each as well as the connectivity patterns of individual nodes of the basal ganglia. Topological network measures showed no significant differences between groups. The composition of top hubs was similar between LLD and control subjects, however in the LLD group posterior medial-parietal regions were more highly connected compared to controls. In LLD, a number of brain regions showed connections with more distant neighbors leading to an increase of the average Euclidean distance between connected regions compared to controls. In addition, right caudate nucleus connectivity was more diffuse in LLD. In summary, LLD was associated with overall increased FC strength and changes in the average distance between connected nodes, but did not lead to global changes in SW or modular organization
    • …
    corecore