159 research outputs found

    An inverse-free ADI algorithm for computing Lagrangian invariant subspaces

    Get PDF
    Summary: The numerical computation of Lagrangian invariant subspaces of large-scale Hamiltonian matrices is discussed in the context of the solution of Lyapunov equations. A new version of the low-rank alternating direction implicit method is introduced, which, in order to avoid numerical difficulties with solutions that are of very large norm, uses an inverse-free representation of the subspace and avoids inverses of ill-conditioned matrices. It is shown that this prevents large growth of the elements of the solution that may destroy a low-rank approximation of the solution. A partial error analysis is presented, and the behavior of the method is demonstrated via several numerical examples. Copyrigh

    An inverse-free ADI algorithm for computing Lagrangian invariant subspaces

    Get PDF
    The numerical computation of Lagrangian invariant subspaces of large scale Hamiltonian matrices is discussed in the context of the solution of Lyapunov and Riccati equations. A new version of the low-rank alternating direction implicit method is introduced, which in order to avoid numerical difficulties with solutions that are of very large norm, uses an inverse-free representation of the subspace and avoids inverses of ill-conditioned matrices. It is shown that this prevents large growth of the elements of the solution which may destroy a low-rank approximation of the solution. A partial error analysis is presented and the behavior of the method is demonstrated via several numerical examples

    Author index for volumes 101–200

    Get PDF

    Stoquasticity in circuit QED

    Full text link
    We analyze whether circuit-QED Hamiltonians are stoquastic focusing on systems of coupled flux qubits: we show that scalable sign-problem free path integral Monte Carlo simulations can typically be performed for such systems. Despite this, we corroborate the recent finding [arXiv:1903.06139] that an effective, non-stoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits. We find that if the capacitive coupling is sufficiently small, this non-stoquasticity of the effective qubit Hamiltonian can be avoided if we perform a canonical transformation prior to projecting onto an effective qubit Hamiltonian. Our results shed light on the power of circuit-QED Hamiltonians for the use of quantum adiabatic computation and the subtlety of finding a representation which cures the sign problem in these system

    Reduced order modeling of convection-dominated flows, dimensionality reduction and stabilization

    Get PDF
    We present methodologies for reduced order modeling of convection dominated flows. Accordingly, three main problems are addressed. Firstly, an optimal manifold is realized to enhance reducibility of convection dominated flows. We design a low-rank auto-encoder to specifically reduce the dimensionality of solution arising from convection-dominated nonlinear physical systems. Although existing nonlinear manifold learning methods seem to be compelling tools to reduce the dimensionality of data characterized by large Kolmogorov n-width, they typically lack a straightforward mapping from the latent space to the high-dimensional physical space. Also, considering that the latent variables are often hard to interpret, many of these methods are dismissed in the reduced order modeling of dynamical systems governed by partial differential equations (PDEs). This deficiency is of importance to the extent that linear methods, such as principle component analysis (PCA) and Koopman operators, are still prevalent. Accordingly, we propose an interpretable nonlinear dimensionality reduction algorithm. An unsupervised learning problem is constructed that learns a diffeomorphic spatio-temporal grid which registers the output sequence of the PDEs on a non-uniform time-varying grid. The Kolmogorov n-width of the mapped data on the learned grid is minimized. Secondly, the reduced order models are constructed on the realized manifolds. We project the high fidelity models on the learned manifold, leading to a time-varying system of equations. Moreover, as a data-driven model free architecture, recurrent neural networks on the learned manifold are trained, showing versatility of the proposed framework. Finally, a stabilization method is developed to maintain stability and accuracy of the projection based ROMs on the learned manifold a posteriori. We extend the eigenvalue reassignment method of stabilization of linear time-invariant ROMs, to the more general case of linear time-varying systems. Through a post-processing step, the ROMs are controlled using a constrained nonlinear lease-square minimization problem. The controller and the input signals are defined at the algebraic level, using left and right singular vectors of the reduced system matrices. The proposed stabilization method is general and applicable to a large variety of linear time-varying ROMs

    Krylov subspace techniques for model reduction and the solution of linear matrix equations

    No full text
    This thesis focuses on the model reduction of linear systems and the solution of large scale linear matrix equations using computationally efficient Krylov subspace techniques. Most approaches for model reduction involve the computation and factorization of large matrices. However Krylov subspace techniques have the advantage that they involve only matrix-vector multiplications in the large dimension, which makes them a better choice for model reduction of large scale systems. The standard Arnoldi/Lanczos algorithms are well-used Krylov techniques that compute orthogonal bases to Krylov subspaces and, by using a projection process on to the Krylov subspace, produce a reduced order model that interpolates the actual system and its derivatives at infinity. An extension is the rational Arnoldi/Lanczos algorithm which computes orthogonal bases to the union of Krylov subspaces and results in a reduced order model that interpolates the actual system and its derivatives at a predefined set of interpolation points. This thesis concentrates on the rational Krylov method for model reduction. In the rational Krylov method an important issue is the selection of interpolation points for which various techniques are available in the literature with different selection criteria. One of these techniques selects the interpolation points such that the approximation satisfies the necessary conditions for H2 optimal approximation. However it is possible to have more than one approximation for which the necessary optimality conditions are satisfied. In this thesis, some conditions on the interpolation points are derived, that enable us to compute all approximations that satisfy the necessary optimality conditions and hence identify the global minimizer to the H2 optimal model reduction problem. It is shown that for an H2 optimal approximation that interpolates at m interpolation points, the interpolation points are the simultaneous solution of m multivariate polynomial equations in m unknowns. This condition reduces to the computation of zeros of a linear system, for a first order approximation. In case of second order approximation the condition is to compute the simultaneous solution of two bivariate polynomial equations. These two cases are analyzed in detail and it is shown that a global minimizer to the H2 optimal model reduction problem can be identified. Furthermore, a computationally efficient iterative algorithm is also proposed for the H2 optimal model reduction problem that converges to a local minimizer. In addition to the effect of interpolation points on the accuracy of the rational interpolating approximation, an ordinary choice of interpolation points may result in a reduced order model that loses the useful properties such as stability, passivity, minimum-phase and bounded real character as well as structure of the actual system. Recently in the literature it is shown that the rational interpolating approximations can be parameterized in terms of a free low dimensional parameter in order to preserve the stability of the actual system in the reduced order approximation. This idea is extended in this thesis to preserve other properties and combinations of them. Also the concept of parameterization is applied to the minimal residual method, two-sided rational Arnoldi method and H2 optimal approximation in order to improve the accuracy of the interpolating approximation. The rational Krylov method has also been used in the literature to compute low rank approximate solutions of the Sylvester and Lyapunov equations, which are useful for model reduction. The approach involves the computation of two set of basis vectors in which each vector is orthogonalized with all previous vectors. This orthogonalization becomes computationally expensive and requires high storage capacity as the number of basis vectors increases. In this thesis, a restart scheme is proposed which restarts without requiring that the new vectors are orthogonal to the previous vectors. Instead, a set of two new orthogonal basis vectors are computed. This reduces the computational burden of orthogonalization and the requirement of storage capacity. It is shown that in case of Lyapunov equations, the approximate solution obtained through the restart scheme approaches monotonically to the actual solution

    Geometry of variational methods: dynamics of closed quantum systems

    Full text link
    We present a systematic geometric framework to study closed quantum systems based on suitably chosen variational families. For the purpose of (A) real time evolution, (B) excitation spectra, (C) spectral functions and (D) imaginary time evolution, we show how the geometric approach highlights the necessity to distinguish between two classes of manifolds: K\"ahler and non-K\"ahler. Traditional variational methods typically require the variational family to be a K\"ahler manifold, where multiplication by the imaginary unit preserves the tangent spaces. This covers the vast majority of cases studied in the literature. However, recently proposed classes of generalized Gaussian states make it necessary to also include the non-K\"ahler case, which has already been encountered occasionally. We illustrate our approach in detail with a range of concrete examples where the geometric structures of the considered manifolds are particularly relevant. These go from Gaussian states and group theoretic coherent states to generalized Gaussian states.Comment: Submission to SciPost, 47+10 pages, 8 figure

    Dirac pairings, one-form symmetries and Seiberg-Witten geometries

    Full text link
    The Coulomb phase of a quantum field theory, when present, illuminates the analysis of its line operators and one-form symmetries. For 4d N=2\mathcal{N}=2 field theories the low energy physics of this phase is encoded in the special K\"ahler geometry of the moduli space of Coulomb vacua. We clarify how the information on the allowed line operator charges and one-form symmetries is encoded in the special K\"ahler structure. We point out the important difference between the lattice of charged states and the homology lattice of the abelian variety fibered over the moduli space, which, when principally polarized, is naturally identified with a choice of the lattice of mutually local line operators. This observation illuminates how the distinct S-duality orbits of global forms of N=4\mathcal{N}=4 theories are encoded geometrically.Comment: v3 - with minor correction
    • …
    corecore