136 research outputs found

    Time series forecasting with interval type-2 intuitionistic fuzzy logic systems

    Get PDF
    Conventional fuzzy time series approaches make use of type-1 or type-2 fuzzy models. Type-1 models with one index (membership grade) cannot fully handle the level of uncertainty inherent in many real world applications. The type-2 models with upper and lower membership functions do handle uncertainties in many applications better than its type-1 counterparts. This study proposes the use of interval type-2 intuitionistic fuzzy logic system of Takagi-Sugeno-Kang (IT2IFLS-TSK) fuzzy inference that utilises more parameters than type-2 fuzzy models in time series forecasting. The IT2IFLS utilises more indexes namely upper and lower non-membership functions. These additional parameters of IT2IFLS serve to refine the fuzzy relationships obtained from type-2 fuzzy models and ultimately improve the forecasting performance. Evaluation is made on the proposed system using three real world benchmark time series problems namely: Santa Fe, tree ring and Canadian lynx datasets. The empirical analyses show improvements of prediction of IT2IFLS over other approaches on these datasets

    Intuitionistic Fuzzy Time Series Functions Approach for Time Series Forecasting

    Get PDF
    Fuzzy inference systems have been commonly used for time series forecasting in the literature. Adaptive network fuzzy inference system, fuzzy time series approaches and fuzzy regression functions approaches are popular among fuzzy inference systems. In recent years, intuitionistic fuzzy sets have been preferred in the fuzzy modeling and new fuzzy inference systems have been proposed based on intuitionistic fuzzy sets. In this paper, a new intuitionistic fuzzy regression functions approach is proposed based on intuitionistic fuzzy sets for forecasting purpose. This new inference system is called an intuitionistic fuzzy time series functions approach. The contribution of the paper is proposing a new intuitionistic fuzzy inference system. To evaluate the performance of intuitionistic fuzzy time series functions, twenty-three real-world time series data sets are analyzed. The results obtained from the intuitionistic fuzzy time series functions approach are compared with some other methods according to a root mean square error and mean absolute percentage error criteria. The proposed method has superior forecasting performance among all methods

    RISK PRIORITY EVALUATION OF POWER TRANSFORMER PARTS BASED ON HYBRID FMEA FRAMEWORK UNDER HESITANT FUZZY ENVIRONMENT

    Get PDF
    The power transformer is one of the most critical facilities in the power system, and its running status directly impacts the power system's security. It is essential to research the risk priority evaluation of the power transformer parts. Failure mode and effects analysis (FMEA) is a methodology for analyzing the potential failure modes (FMs) within a system in various industrial devices. This study puts forward a hybrid FMEA framework integrating novel hesitant fuzzy aggregation tools and CRITIC (Criteria Importance Through Inter-criteria Correlation) method. In this framework, the hesitant fuzzy sets (HFSs) are used to depict the uncertainty in risk evaluation. Then, an improved HFWA (hesitant fuzzy weighted averaging) operator is adopted to fuse risk evaluation for FMEA experts. This aggregation manner can consider different lengths of HFSs and the support degrees among the FMEA experts. Next, the novel HFWGA (hesitant fuzzy weighted geometric averaging) operator with CRITIC weights is developed to determine the risk priority of each FM. This method can satisfy the multiplicative characteristic of the RPN (risk priority number) method of the conventional FMEA model and reflect the correlations between risk indicators. Finally, a real example of the risk priority evaluation of power transformer parts is given to show the applicability and feasibility of the proposed hybrid FMEA framework. Comparison and sensitivity studies are also offered to verify the effectiveness of the improved risk assessment approach
    corecore