950 research outputs found

    Injective colorings of graphs with low average degree

    Full text link
    Let \mad(G) denote the maximum average degree (over all subgraphs) of GG and let Ο‡i(G)\chi_i(G) denote the injective chromatic number of GG. We prove that if Ξ”β‰₯4\Delta\geq 4 and \mad(G)<\frac{14}5, then Ο‡i(G)≀Δ+2\chi_i(G)\leq\Delta+2. When Ξ”=3\Delta=3, we show that \mad(G)<\frac{36}{13} implies Ο‡i(G)≀5\chi_i(G)\le 5. In contrast, we give a graph GG with Ξ”=3\Delta=3, \mad(G)=\frac{36}{13}, and Ο‡i(G)=6\chi_i(G)=6.Comment: 15 pages, 3 figure

    Planar graphs are 9/2-colorable

    Full text link
    We show that every planar graph GG has a 2-fold 9-coloring. In particular, this implies that GG has fractional chromatic number at most 92\frac92. This is the first proof (independent of the 4 Color Theorem) that there exists a constant k<5k<5 such that every planar GG has fractional chromatic number at most kk.Comment: 12 pages, 6 figures; following the suggestion of an editor, we split the original version of this paper into two papers: one is the current version of this paper, and the other is "Planar graphs have Independence Ratio at least 3/13" (also available on the arXiv

    Linear Choosability of Sparse Graphs

    Get PDF
    We study the linear list chromatic number, denoted \lcl(G), of sparse graphs. The maximum average degree of a graph GG, denoted \mad(G), is the maximum of the average degrees of all subgraphs of GG. It is clear that any graph GG with maximum degree Ξ”(G)\Delta(G) satisfies \lcl(G)\ge \ceil{\Delta(G)/2}+1. In this paper, we prove the following results: (1) if \mad(G)<12/5 and Ξ”(G)β‰₯3\Delta(G)\ge 3, then \lcl(G)=\ceil{\Delta(G)/2}+1, and we give an infinite family of examples to show that this result is best possible; (2) if \mad(G)<3 and Ξ”(G)β‰₯9\Delta(G)\ge 9, then \lcl(G)\le\ceil{\Delta(G)/2}+2, and we give an infinite family of examples to show that the bound on \mad(G) cannot be increased in general; (3) if GG is planar and has girth at least 5, then \lcl(G)\le\ceil{\Delta(G)/2}+4.Comment: 12 pages, 2 figure

    Edge-coloring via fixable subgraphs

    Full text link
    Many graph coloring proofs proceed by showing that a minimal counterexample to the theorem being proved cannot contain certain configurations, and then showing that each graph under consideration contains at least one such configuration; these configurations are called \emph{reducible} for that theorem. (A \emph{configuration} is a subgraph HH, along with specified degrees dG(v)d_G(v) in the original graph GG for each vertex of HH.) We give a general framework for showing that configurations are reducible for edge-coloring. A particular form of reducibility, called \emph{fixability}, can be considered without reference to a containing graph. This has two key benefits: (i) we can now formulate necessary conditions for fixability, and (ii) the problem of fixability is easy for a computer to solve. The necessary condition of \emph{superabundance} is sufficient for multistars and we conjecture that it is sufficient for trees as well, which would generalize the powerful technique of Tashkinov trees. Via computer, we can generate thousands of reducible configurations, but we have short proofs for only a small fraction of these. The computer can write \LaTeX\ code for its proofs, but they are only marginally enlightening and can run thousands of pages long. We give examples of how to use some of these reducible configurations to prove conjectures on edge-coloring for small maximum degree. Our aims in writing this paper are (i) to provide a common context for a variety of reducible configurations for edge-coloring and (ii) to spur development of methods for humans to understand what the computer already knows.Comment: 18 pages, 8 figures; 12-page appendix with 39 figure
    • …
    corecore