508 research outputs found

    A Tale of Two Fractals: The Hofstadter Butterfly and The Integral Apollonian Gaskets

    Full text link
    This paper unveils a mapping between a quantum fractal that describes a physical phenomena, and an abstract geometrical fractal. The quantum fractal is the Hofstadter butterfly discovered in 1976 in an iconic condensed matter problem of electrons moving in a two-dimensional lattice in a transverse magnetic field. The geometric fractal is the integer Apollonian gasket characterized in terms of a 300 BC problem of mutually tangent circles. Both of these fractals are made up of integers. In the Hofstadter butterfly, these integers encode the topological quantum numbers of quantum Hall conductivity. In the Apollonian gaskets an infinite number of mutually tangent circles are nested inside each other, where each circle has integer curvature. The mapping between these two fractals reveals a hidden threefold symmetry embedded in the kaleidoscopic images that describe the asymptotic scaling properties of the butterfly. This paper also serves as a mini review of these fractals, emphasizing their hierarchical aspects in terms of Farey fractions

    Coherence in scale-free networks of chaotic maps

    Get PDF
    We study fully synchronized states in scale-free networks of chaotic logistic maps as a function of both dynamical and topological parameters. Three different network topologies are considered: (i) random scale-free topology, (ii) deterministic pseudo-fractal scale-free network, and (iii) Apollonian network. For the random scale-free topology we find a coupling strength threshold beyond which full synchronization is attained. This threshold scales as k−μk^{-\mu}, where kk is the outgoing connectivity and μ\mu depends on the local nonlinearity. For deterministic scale-free networks coherence is observed only when the coupling strength is proportional to the neighbor connectivity. We show that the transition to coherence is of first-order and study the role of the most connected nodes in the collective dynamics of oscillators in scale-free networks.Comment: 9 pages, 8 figure

    Apollonian structure in the Abelian sandpile

    Full text link
    The Abelian sandpile process evolves configurations of chips on the integer lattice by toppling any vertex with at least 4 chips, distributing one of its chips to each of its 4 neighbors. When begun from a large stack of chips, the terminal state of the sandpile has a curious fractal structure which has remained unexplained. Using a characterization of the quadratic growths attainable by integer-superharmonic functions, we prove that the sandpile PDE recently shown to characterize the scaling limit of the sandpile admits certain fractal solutions, giving a precise mathematical perspective on the fractal nature of the sandpile.Comment: 27 Pages, 7 Figure

    Spectral Action Models of Gravity on Packed Swiss Cheese Cosmology

    Get PDF
    We present a model of (modified) gravity on spacetimes with fractal structure based on packing of spheres, which are (Euclidean) variants of the Packed Swiss Cheese Cosmology models. As the action functional for gravity we consider the spectral action of noncommutative geometry, and we compute its expansion on a space obtained as an Apollonian packing of 3-dimensional spheres inside a 4-dimensional ball. Using information from the zeta function of the Dirac operator of the spectral triple, we compute the leading terms in the asymptotic expansion of the spectral action. They consist of a zeta regularization of a divergent sum which involves the leading terms of the spectral actions of the individual spheres in the packing. This accounts for the contribution of the points 1 and 3 in the dimension spectrum (as in the case of a 3-sphere). There is an additional term coming from the residue at the additional point in the real dimension spectrum that corresponds to the packing constant, as well as a series of fluctuations coming from log-periodic oscillations, created by the points of the dimension spectrum that are off the real line. These terms detect the fractality of the residue set of the sphere packing. We show that the presence of fractality influences the shape of the slow-roll potential for inflation, obtained from the spectral action. We also discuss the effect of truncating the fractal structure at a certain scale related to the energy scale in the spectral action.Comment: 38 pages LaTe

    Polydisperse Adsorption: Pattern Formation Kinetics, Fractal Properties, and Transition to Order

    Full text link
    We investigate the process of random sequential adsorption of polydisperse particles whose size distribution exhibits a power-law dependence in the small size limit, P(R)∼Rα−1P(R)\sim R^{\alpha-1}. We reveal a relation between pattern formation kinetics and structural properties of arising patterns. We propose a mean-field theory which provides a fair description for sufficiently small α\alpha. When α→∞\alpha \to \infty, highly ordered structures locally identical to the Apollonian packing are formed. We introduce a quantitative criterion of the regularity of the pattern formation process. When α≫1\alpha \gg 1, a sharp transition from irregular to regular pattern formation regime is found to occur near the jamming coverage of standard random sequential adsorption with monodisperse size distribution.Comment: 8 pages, LaTeX, 5 figures, to appear in Phys.Rev.

    Self-similar disk packings as model spatial scale-free networks

    Full text link
    The network of contacts in space-filling disk packings, such as the Apollonian packing, are examined. These networks provide an interesting example of spatial scale-free networks, where the topology reflects the broad distribution of disk areas. A wide variety of topological and spatial properties of these systems are characterized. Their potential as models for networks of connected minima on energy landscapes is discussed.Comment: 13 pages, 12 figures; some bugs fixed and further discussion of higher-dimensional packing

    Cohomology fractals

    Get PDF
    We introduce cohomology fractals; these are certain images associated to a cohomology class on a hyperbolic three-manifold. They include images made entirely from circles, and also images with no geometrically simple features. They are closely related to limit sets of kleinian groups, but have some key differences. As a consequence, we can zoom in almost any direction to arbitrary depth in real time. We present an implementation in the setting of ideal triangulations using ray-casting.Comment: 8 pages, 30 figures and subfigure
    • …
    corecore