21,799 research outputs found

    Quantum Communication and Decoherence

    Get PDF
    In this contribution we will give a brief overview on the methods used to overcome decoherence in quantum communication protocols. We give an introduction to quantum error correction, entanglement purification and quantum cryptography. It is shown that entanglement purification can be used to create ``private entanglement'', which makes it a useful tool for cryptographic protocols.Comment: 31 pages, 10 figures, LaTeX, book chapter to appear in ``Coherent Evolution in Noisy Environments'', Lecture Notes in Physics, (Springer Verlag, Berlin-Heidelberg-New York). Minor typos correcte

    Quantum Key Distribution

    Get PDF
    This chapter describes the application of lasers, specifically diode lasers, in the area of quantum key distribution (QKD). First, we motivate the distribution of cryptographic keys based on quantum physical properties of light, give a brief introduction to QKD assuming the reader has no or very little knowledge about cryptography, and briefly present the state-of-the-art of QKD. In the second half of the chapter we describe, as an example of a real-world QKD system, the system deployed between the University of Calgary and SAIT Polytechnic. We conclude the chapter with a brief discussion of quantum networks and future steps.Comment: 20 pages, 12 figure

    Assumptions in Quantum Cryptography

    Full text link
    Quantum cryptography uses techniques and ideas from physics and computer science. The combination of these ideas makes the security proofs of quantum cryptography a complicated task. To prove that a quantum-cryptography protocol is secure, assumptions are made about the protocol and its devices. If these assumptions are not justified in an implementation then an eavesdropper may break the security of the protocol. Therefore, security is crucially dependent on which assumptions are made and how justified the assumptions are in an implementation of the protocol. This thesis is primarily a review that analyzes and clarifies the connection between the security proofs of quantum-cryptography protocols and their experimental implementations. In particular, we focus on quantum key distribution: the task of distributing a secret random key between two parties. We provide a comprehensive introduction to several concepts: quantum mechanics using the density operator formalism, quantum cryptography, and quantum key distribution. We define security for quantum key distribution and outline several mathematical techniques that can either be used to prove security or simplify security proofs. In addition, we analyze the assumptions made in quantum cryptography and how they may or may not be justified in implementations. Along with the review, we propose a framework that decomposes quantum-key-distribution protocols and their assumptions into several classes. Protocol classes can be used to clarify which proof techniques apply to which kinds of protocols. Assumption classes can be used to specify which assumptions are justified in implementations and which could be exploited by an eavesdropper. Two contributions of the author are discussed: the security proofs of two two-way quantum-key-distribution protocols and an intuitive proof of the data-processing inequality.Comment: PhD Thesis, 221 page

    An Introduction to Distributed Cryptography Based on Quantum Cryptography

    Full text link

    Claw Finding Algorithms Using Quantum Walk

    Get PDF
    The claw finding problem has been studied in terms of query complexity as one of the problems closely connected to cryptography. For given two functions, f and g, as an oracle which have domains of size N and M (N<=M), respectively, and the same range, the goal of the problem is to find x and y such that f(x)=g(y). This paper describes an optimal algorithm using quantum walk that solves this problem. Our algorithm can be generalized to find a claw of k functions for any constant integer k>1, where the domains of the functions may have different size.Comment: 12 pages. Introduction revised. A reference added. Weak lower bound delete

    Trevisan's extractor in the presence of quantum side information

    Get PDF
    Randomness extraction involves the processing of purely classical information and is therefore usually studied in the framework of classical probability theory. However, such a classical treatment is generally too restrictive for applications, where side information about the values taken by classical random variables may be represented by the state of a quantum system. This is particularly relevant in the context of cryptography, where an adversary may make use of quantum devices. Here, we show that the well known construction paradigm for extractors proposed by Trevisan is sound in the presence of quantum side information. We exploit the modularity of this paradigm to give several concrete extractor constructions, which, e.g, extract all the conditional (smooth) min-entropy of the source using a seed of length poly-logarithmic in the input, or only require the seed to be weakly random.Comment: 20+10 pages; v2: extract more min-entropy, use weakly random seed; v3: extended introduction, matches published version with sections somewhat reordere

    On the QQ-deformed Heisenberg uncertainty relations and discrete time

    Get PDF
    summary:The opportunity for verifying the basic principles of quantum theory and possible qq-deformation appears in quantum cryptography (QC) -- a new discipline of physics and information theory.\par The author, member of the group of cryptology of Praha, presents in this paper the possibility to verify the qq-deformation of Heisenberg uncertainty relation qq-deformed QM and possible discretization on the base of a model presented in the fourth section.\par In the seven sections, the author discusses these problems. First an introduction. The second section is on fractional supersymmetry and qq-deformed quantum mechanics (QM). So he obtains fractional superspace. In section 3, he presents basic information on quantum cryptography (QC) used then for the verification of the qq-deformation of QM in the null sector. In section 4, he presents a violation of quantum channel via qq-deformation and in section 5 the qq-deformed Heisenberg uncertainty relation in QC and a m
    • …
    corecore