8,112 research outputs found

    Future broadband access network challenges

    Get PDF
    Copyright @ 2010 IEEEThe optical and wireless communication systems convergence will activate the potential capacity of photonic technology for providing the expected growth in interactive video, voice communication and data traffic services that are cost effective and a green communication service. The last decade growth of the broadband internet projects the number of active users will grow to over 2 billion globally by the end of 2014. Enabling the abandoned capacity of photonic signal processing is the promising solution for seamless transportation of the future consumer traffic demand. In this paper, the future traffic growth of the internet, wireless worldwide subscribers, and the end-users during the last and next decades is investigated. The challenges of the traditional access networks and Radio over Fiber solution are presented

    28 GHz and 73 GHz Millimeter-Wave Indoor Propagation Measurements and Path Loss Models

    Full text link
    This paper presents 28 GHz and 73 GHz millimeter- wave propagation measurements performed in a typical office environment using a 400 Megachip-per-second broadband sliding correlator channel sounder and highly directional steerable 15 dBi (30 degrees beamwidth) and 20 dBi (15 degrees beamwidth) horn antennas. Power delay profiles were acquired for 48 transmitter-receiver location combinations over distances ranging from 3.9 m to 45.9 m with maximum transmit powers of 24 dBm and 12.3 dBm at 28 GHz and 73 GHz, respectively. Directional and omnidirectional path loss models and RMS delay spread statistics are presented for line-of-sight and non-line-of-sight environments for both co- and cross-polarized antenna configurations. The LOS omnidirectional path loss exponents were 1.1 and 1.3 at 28 GHz and 73 GHz, and 2.7 and 3.2 in NLOS at 28 GHz and 73 GHz, respectively, for vertically-polarized antennas. The mean directional RMS delay spreads were 18.4 ns and 13.3 ns, with maximum values of 193 ns and 288 ns at 28 GHz and 73 GHz, respectively.Comment: 7 pages, 9 figures, 2015 IEEE International Conference on Communications (ICC), ICC Workshop

    Full duplex 60 GHz millimeter wave transmission over multi-mode fiber

    Get PDF
    Copyright @ 2010 IEEENew wireless subscribers are signing up at an increasing demand of more capacity for ultra-high data rate transfers at speeds more than 1 Gbps, while the radio spectrum is limited. Millimeter wave communication system offers a unique way to resolve these problems. In this paper, the performance of a full duplex transportation system is reported for 1.5 Km of multi-mode fiber length for a sample 10 Gbit/s pseudo random sequence data, with quadrature amplitude modulation mapping and orthogonal frequency division multiplexing modulation with 60 GHz RF and coherent 1550 nm optical carrier. The analysis and simulation results show that the system's quality of service depends on nonlinearity of electro optical modulator, dispersion and signal attenuation impairment of the multi-mode fiber cable

    Nonlinearity and Noise Effects in Multi-level Signal Millimeter-Wave over Fiber Transmission using Single- and Dual-Wavelength Modulation

    Get PDF
    We transmit multilevel quadrature amplitude modulation (QAM) data-IEEE 802.16 schemes-at 20 MSps and an orthogonal frequency-division multiplexing (OFDM) 802.11 g signal (54 Mbps) with a 25 GHz millimeter-wave over fiber system, which employs a dual wavelength source, over 20 km of single mode fiber. Downlink data transmission is successfully demonstrated over both optical and wireless (up to 12 m) paths with good error vector magnitude. An analysis of two different schemes, in which data is applied to one (single) and both (dual) of the wavelengths of a dual wavelength source, is carried out. The system performance is analyzed through simulation and a good match with experimental results is obtained. The analysis investigates the impact of Mach-Zehnder modulator (MZM) and RF amplifier nonlinearity and various noise sources, such as laser relative intensity noise, amplified spontaneous emission, thermal, and shot noise. A comparison of single carrier QAM IEEE 802.16 and OFDM in terms of their sensitivity to the distortions from MZM and RF amplifier nonlinearity is also presented

    3-D Statistical Channel Model for Millimeter-Wave Outdoor Mobile Broadband Communications

    Full text link
    This paper presents an omnidirectional spatial and temporal 3-dimensional statistical channel model for 28 GHz dense urban non-line of sight environments. The channel model is developed from 28 GHz ultrawideband propagation measurements obtained with a 400 megachips per second broadband sliding correlator channel sounder and highly directional, steerable horn antennas in New York City. A 3GPP-like statistical channel model that is easy to implement in software or hardware is developed from measured power delay profiles and a synthesized method for providing absolute propagation delays recovered from 3-D ray-tracing, as well as measured angle of departure and angle of arrival power spectra. The extracted statistics are used to implement a MATLAB-based statistical simulator that generates 3-D millimeter-wave temporal and spatial channel coefficients that reproduce realistic impulse responses of measured urban channels. The methods and model presented here can be used for millimeter-wave system-wide simulations, and air interface design and capacity analyses.Comment: 7 pages, 6 figures, ICC 2015 (London, UK, to appear

    An Invariant Dual-beam Snowflake Antenna for Future 5G Communications

    Get PDF
    A broadband snowflake antenna for future 5G and millimeter-wave communications is presented. The proposed antenna has a size of 8 × 5 mm 2 . The antenna consists of a central hexagon surrounded by a series of symmetrically placed smaller hexagons around it, resulting in broadband characteristics. The impedance bandwidth of the proposed antenna ranges from 25.284-29.252 GHz. The antenna has a gain of 3.12 dBi at 28 GHz and is more than 98% efficient. A distinct feature of the proposed antenna is its dual-beam radiation pattern. The two beams remain fixed at ±50° even if the frequency is varied with in its operating band. The proposed antenna is modelled on thin Rogers substrate which makes it very useful for future 5G smart phones
    • …
    corecore