1,432 research outputs found

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    On Constructing Persistent Identifiers with Persistent Resolution Targets

    Get PDF
    Persistent Identifiers (PID) are the foundation referencing digital assets in scientific publications, books, and digital repositories. In its realization, PIDs contain metadata and resolving targets in form of URLs that point to data sets located on the network. In contrast to PIDs, the target URLs are typically changing over time; thus, PIDs need continuous maintenance -- an effort that is increasing tremendously with the advancement of e-Science and the advent of the Internet-of-Things (IoT). Nowadays, billions of sensors and data sets are subject of PID assignment. This paper presents a new approach of embedding location independent targets into PIDs that allows the creation of maintenance-free PIDs using content-centric network technology and overlay networks. For proving the validity of the presented approach, the Handle PID System is used in conjunction with Magnet Link access information encoding, state-of-the-art decentralized data distribution with BitTorrent, and Named Data Networking (NDN) as location-independent data access technology for networks. Contrasting existing approaches, no green-field implementation of PID or major modifications of the Handle System is required to enable location-independent data dissemination with maintenance-free PIDs.Comment: Published IEEE paper of the FedCSIS 2016 (SoFAST-WS'16) conference, 11.-14. September 2016, Gdansk, Poland. Also available online: http://ieeexplore.ieee.org/document/7733372

    Linux XIA: an interoperable meta network architecture to crowdsource the future Internet

    Full text link
    With the growing number of proposed clean-slate redesigns of the Internet, the need for a medium that enables all stakeholders to participate in the realization, evaluation, and selection of these designs is increasing. We believe that the missing catalyst is a meta network architecture that welcomes most, if not all, clean-state designs on a level playing field, lowers deployment barriers, and leaves the final evaluation to the broader community. This paper presents Linux XIA, a native implementation of XIA [12] in the Linux kernel, as a candidate. We first describe Linux XIA in terms of its architectural realizations and algorithmic contributions. We then demonstrate how to port several distinct and unrelated network architectures onto Linux XIA. Finally, we provide a hybrid evaluation of Linux XIA at three levels of abstraction in terms of its ability to: evolve and foster interoperation of new architectures, embed disparate architectures inside the implementation’s framework, and maintain a comparable forwarding performance to that of the legacy TCP/IP implementation. Given this evaluation, we substantiate a previously unsupported claim of XIA: that it readily supports and enables network evolution, collaboration, and interoperability—traits we view as central to the success of any future Internet architecture.This research was supported by the National Science Foundation under awards CNS-1040800, CNS-1345307 and CNS-1347525
    • …
    corecore