520 research outputs found

    An introduction to DSmT

    Get PDF
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT), developed for dealing with imprecise, uncertain and conflicting sources of information. We focus our presentation on the foundations of DSmT and on its most important rules of combination, rather than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout this presentation to show the efficiency and the generality of this new approach

    An introduction to Dezert-Smarandache Theory (DSmT)

    Get PDF
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or highly conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT), developed for dealing with imprecise, uncertain and conflicting sources of information. We focus our presentation on the foundations of DSmT and on its most important rules of combination, rather than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout this presentation to show the efficiency and the generality of this new theor

    Automatic goal allocation for a planetary rover with DSmT

    Get PDF
    In this chapter, we propose an approach for assigning aninterest level to the goals of a planetary rover. Assigning an interest level to goals, allows the rover to autonomously transform and reallocate the goals. The interest level is defined by data-fusing payload and navigation information. The fusion yields an 'interest map',that quantifies the level of interest of each area around the rover. In this way the planner can choose the most interesting scientific objectives to be analysed, with limited human intervention, and reallocates its goals autonomously. The Dezert-Smarandache Theory of Plausible and Paradoxical Reasoning was used for information fusion: this theory allows dealing with vague and conflicting data. In particular, it allows us to directly model the behaviour of the scientists that have to evaluate the relevance of a particular set of goals. This chaptershows an application of the proposed approach to the generation of a reliable interest map

    The Combination of Paradoxical, Uncertain, and Imprecise Sources of Information based on DSmT and Neutro-Fuzzy Inference

    Full text link
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this chapter, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature, developed for dealing with imprecise, uncertain and paradoxical sources of information. We focus our presentation here rather on the foundations of DSmT, and on the two important new rules of combination, than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout the presentation to show the efficiency and the generality of this new approach. The last part of this chapter concerns the presentation of the neutrosophic logic, the neutro-fuzzy inference and its connection with DSmT. Fuzzy logic and neutrosophic logic are useful tools in decision making after fusioning the information using the DSm hybrid rule of combination of masses.Comment: 20 page

    A two-step fusion process for multi-criteria decision applied to natural hazards in mountains

    Get PDF
    Mountain river torrents and snow avalanches generate human and material damages with dramatic consequences. Knowledge about natural phenomenona is often lacking and expertise is required for decision and risk management purposes using multi-disciplinary quantitative or qualitative approaches. Expertise is considered as a decision process based on imperfect information coming from more or less reliable and conflicting sources. A methodology mixing the Analytic Hierarchy Process (AHP), a multi-criteria aid-decision method, and information fusion using Belief Function Theory is described. Fuzzy Sets and Possibilities theories allow to transform quantitative and qualitative criteria into a common frame of discernment for decision in Dempster-Shafer Theory (DST ) and Dezert-Smarandache Theory (DSmT) contexts. Main issues consist in basic belief assignments elicitation, conflict identification and management, fusion rule choices, results validation but also in specific needs to make a difference between importance and reliability and uncertainty in the fusion process

    Impact-ionization and noise characteristics of thin III-V avalanche photodiodes

    Get PDF
    It is, by now, well known that McIntyre\u27s localized carrier-multiplication theory cannot explain the suppression of excess noise factor observed in avalanche photodiodes (APDs) that make use of thin multiplication regions. We demonstrate that a carrier multiplication model that incorporates the effects of dead space, as developed earlier by Hayat et al. provides excellent agreement with the impact-ionization and noise characteristics of thin InP, In/sub 0.52/Al/sub 0.48/As, GaAs, and Al/sub 0.2/Ga/sub 0.8/As APDs, with multiplication regions of different widths. We outline a general technique that facilitates the calculation of ionization coefficients for carriers that have traveled a distance exceeding the dead space (enabled carriers), directly from experimental excess-noise-factor data. These coefficients depend on the electric field in exponential fashion and are independent of multiplication width, as expected on physical grounds. The procedure for obtaining the ionization coefficients is used in conjunction with the dead-space-multiplication theory (DSMT) to predict excess noise factor versus mean-gain curves that are in excellent accord with experimental data for thin III-V APDs, for all multiplication-region widths
    • ā€¦
    corecore