354 research outputs found

    Fuzzy Bi-level Decision-Making Techniques: A Survey

    Full text link
    © 2016 the authors. Bi-level decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a bi-level hierarchy. A challenge in handling bi-level decision problems is that various uncertainties naturally appear in decision-making process. Significant efforts have been devoted that fuzzy set techniques can be used to effectively deal with uncertain issues in bi-level decision-making, known as fuzzy bi-level decision-making techniques, and researchers have successfully gained experience in this area. It is thus vital that an instructive review of current trends in this area should be conducted, not only of the theoretical research but also the practical developments. This paper systematically reviews up-to-date fuzzy bi-level decisionmaking techniques, including models, approaches, algorithms and systems. It also clusters related technique developments into four main categories: basic fuzzy bi-level decision-making, fuzzy bi-level decision-making with multiple optima, fuzzy random bi-level decision-making, and the applications of bi-level decision-making techniques in different domains. By providing state-of-the-art knowledge, this survey paper will directly support researchers and practitioners in their understanding of developments in theoretical research results and applications in relation to fuzzy bi-level decision-making techniques

    An Evolutionary Algorithm Using Duality-Base-Enumerating Scheme for Interval Linear Bilevel Programming Problems

    Get PDF
    Interval bilevel programming problem is hard to solve due to its hierarchical structure as well as the uncertainty of coefficients. This paper is focused on a class of interval linear bilevel programming problems, and an evolutionary algorithm based on duality bases is proposed. Firstly, the objective coefficients of the lower level and the right-hand-side vector are uniformly encoded as individuals, and the relative intervals are taken as the search space. Secondly, for each encoded individual, based on the duality theorem, the original problem is transformed into a single level program simply involving one nonlinear equality constraint. Further, by enumerating duality bases, this nonlinear equality is deleted, and the single level program is converted into several linear programs. Finally, each individual can be evaluated by solving these linear programs. The computational results of 7 examples show that the algorithm is feasible and robust

    Fuzzy Random Noncooperative Two-level Linear Programming through Absolute Deviation Minimization Using Possibility and Necessity

    Get PDF
    This paper considers fuzzy random two-level linear programming problems under noncooperative behaviorof the decision makers. Having introduced fuzzy goals of decision makers together with the possibiliy and necessity measure, following absolute deviation minimization, fuzzy random two-level programin problems are transformed into deterministic ones. Extended Stackelberg solutions are introduced andcomputational methods are also presented

    An Efficient Ranking Technique for Intuitionistic Fuzzy Numbers with Its Application in Chance Constrained Bilevel Programming

    Get PDF
    The aim of this paper is to develop a new ranking technique for intuitionistic fuzzy numbers using the method of defuzzification based on probability density function of the corresponding membership function, as well as the complement of nonmembership function. Using the proposed ranking technique a methodology for solving linear bilevel fuzzy stochastic programming problem involving normal intuitionistic fuzzy numbers is developed. In the solution process each objective is solved independently to set the individual goal value of the objectives of the decision makers and thereby constructing fuzzy membership goal of the objectives of each decision maker. Finally, a fuzzy goal programming approach is considered to achieve the highest membership degree to the extent possible of each of the membership goals of the decision makers in the decision making context. Illustrative numerical examples are provided to demonstrate the applicability of the proposed methodology and the achieved results are compared with existing techniques

    Fuzzy Bilevel Optimization

    Get PDF
    In the dissertation the solution approaches for different fuzzy optimization problems are presented. The single-level optimization problem with fuzzy objective is solved by its reformulation into a biobjective optimization problem. A special attention is given to the computation of the membership function of the fuzzy solution of the fuzzy optimization problem in the linear case. Necessary and sufficient optimality conditions of the the convex nonlinear fuzzy optimization problem are derived in differentiable and nondifferentiable cases. A fuzzy optimization problem with both fuzzy objectives and constraints is also investigated in the thesis in the linear case. These solution approaches are applied to fuzzy bilevel optimization problems. In the case of bilevel optimization problem with fuzzy objective functions, two algorithms are presented and compared using an illustrative example. For the case of fuzzy linear bilevel optimization problem with both fuzzy objectives and constraints k-th best algorithm is adopted.:1 Introduction 1 1.1 Why optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fuzziness as a concept . . . . . . . . . . . . . . . . . . . . .. . . . . . . 2 1.3 Bilevel problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Preliminaries 11 2.1 Fuzzy sets and fuzzy numbers . . . . . . . . . . . . . . . . . . . . . 11 2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Fuzzy order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Fuzzy functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 3 Optimization problem with fuzzy objective 19 3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Local optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Existence of an optimal solution . . . . . . . . . . . . . . . . . . . . 25 4 Linear optimization with fuzzy objective 27 4.1 Main approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 Membership function value . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4.1 Special case of triangular fuzzy numbers . . . . . . . . . . . . 36 4.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 5 Optimality conditions 47 5.1 Differentiable fuzzy optimization problem . . . . . . . . . . .. . . . 48 5.1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.1.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . .. 49 5.1.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Nondifferentiable fuzzy optimization problem . . . . . . . . . . . . 51 5.2.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.2 Necessary optimality conditions . . . . . . . . . . . . . . . . . . . 52 5.2.3 Suffcient optimality conditions . . . . . . . . . . . . . . . . . . . . . . 54 5.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6 Fuzzy linear optimization problem over fuzzy polytope 59 6.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2 The fuzzy polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.3 Formulation and solution method . . . . . . . . . . . . . . . . . . .. . 65 6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7 Bilevel optimization with fuzzy objectives 73 7.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.2 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 7.3 Yager index approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4 Algorithm I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.5 Membership function approach . . . . . . . . . . . . . . . . . . . . . . .78 7.6 Algorithm II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 7.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8 Linear fuzzy bilevel optimization (with fuzzy objectives and constraints) 87 8.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.2 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 9 Conclusions 95 Bibliography 9

    Bi-level optimization based on fuzzy if-then rule

    Get PDF
    A bi-level programming problem has been developed where the functional relationship linking decision variables and the objective functions of leader and follower are not utterly well known to us. Because of the uncertainty in practical life decision-making situation most of the time it is inconvenient to find the veracious relationship between the objective functions of leader, follower and the decision variables. It is expected that the source of information which gives some command about the objective functions of leader and follower, is composed by a block of fuzzy if-then rules. In order to analyze the model, A dynamic programming approach with a suitable fuzzy reasoning scheme is applied to calculate the deterministic functional relationship linking the decision variables and the objective functions of leader as well as follower. Thus a bi-level programming problem is constructed from the actual fuzzy rule-based to the conventional bi-level programming problem. To solve the final problem, we use the lingo software to find the optimal of objective function of follower first and using its solution we optimize the objective function of leader. A numerical example has been solved to signify the computational procedure.</p

    A compromise-based particle swarm optimization algorithm for solving Bi-level programming problems with fuzzy parameters

    Full text link
    © 2015 IEEE. Bi-level programming has arisen to handle decentralized decision-making problems that feature interactive decision entities distributed throughout a bi-level hierarchy. Fuzzy parameters often appear in such a problem in applications and this is called a fuzzy bi-level programming problem. Since the existing approaches lack universality in solving such problems, this study aims to develop a particle swarm optimization (PSO) algorithm to solve fuzzy bi-level programming problems in the linear and nonlinear versions. In this paper, we first present a general fuzzy bi-level programming problem and discuss related theoretical properties based on a fuzzy number ranking method commonly used. A PSO algorithm is then developed to solve the fuzzy bi-level programming problem based on different compromised selections by decision entities on the feasible degree for constraint conditions under fuzziness. Lastly, an illustrative numerical example and two benchmark examples are adopted to state the effectiveness of the compromise-based PSO algorithm

    Improved two-phase solution strategy for multiobjective fuzzy stochastic linear programming problems with uncertain probability distribution

    Get PDF
    Multiobjective Fuzzy Stochastic Linear Programming (MFSLP) problem where the linear inequalities on the probability are fuzzy is called a Multiobjective Fuzzy Stochastic Linear Programming problem with Fuzzy Linear Partial Information on Probability Distribution (MFSLPPFI). The uncertainty presents unique difficulties in constrained optimization problems owing to the presence of conflicting goals and randomness surrounding the data. Most existing solution techniques for MFSLPPFI problems rely heavily on the expectation optimization model, the variance minimization model, the probability maximization model, pessimistic/optimistic values and compromise solution under partial uncertainty of random parameters. Although these approaches recognize the fact that the interval values for probability distribution have important significance, nevertheless they are restricted by the upper and lower limitations of probability distribution and neglected the interior values. This limitation motivated us to search for more efficient strategies for MFSLPPFI which address both the fuzziness of the probability distributions, and the fuzziness and randomness of the parameters. The proposed strategy consists two phases: fuzzy transformation and stochastic transformation. First, ranking function is used to transform the MFSLPPFI to Multiobjective Stochastic Linear Programming Problem with Fuzzy Linear Partial Information on Probability Distribution (MSLPPFI). The problem is then transformed to its corresponding Multiobjective Linear Programming (MLP) problem by using a-cut technique of uncertain probability distribution and linguistic hedges. In addition, Chance Constraint Programming (CCP), and expectation of random coefficients are applied to the constraints and the objectives respectively. Finally, the MLP problem is converted to a single-objective Linear Programming (LP) problem via an Adaptive Arithmetic Average Method (AAAM), and then solved by using simplex method. The algorithm used to obtain the solution requires fewer iterations and faster generation of results compared to existing solutions. Three realistic examples are tested which show that the approach used in this study is efficient in solving the MFSLPPFI
    corecore