23,647 research outputs found

    Designing a CPU model: from a pseudo-formal document to fast code

    Get PDF
    For validating low level embedded software, engineers use simulators that take the real binary as input. Like the real hardware, these full-system simulators are organized as a set of components. The main component is the CPU simulator (ISS), because it is the usual bottleneck for the simulation speed, and its development is a long and repetitive task. Previous work showed that an ISS can be generated from an Architecture Description Language (ADL). In the work reported in this paper, we generate a CPU simulator directly from the pseudo-formal descriptions of the reference manual. For each instruction, we extract the information describing its behavior, its binary encoding, and its assembly syntax. Next, after automatically applying many optimizations on the extracted information, we generate a SystemC/TLM ISS. We also generate tests for the decoder and a formal specification in Coq. Experiments show that the generated ISS is as fast and stable as our previous hand-written ISS.Comment: 3rd Workshop on: Rapid Simulation and Performance Evaluation: Methods and Tools (2011

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    CU2CL: A CUDA-to-OpenCL Translator for Multi- and Many-core Architectures

    Get PDF
    The use of graphics processing units (GPUs) in high-performance parallel computing continues to become more prevalent, often as part of a heterogeneous system. For years, CUDA has been the de facto programming environment for nearly all general-purpose GPU (GPGPU) applications. In spite of this, the framework is available only on NVIDIA GPUs, traditionally requiring reimplementation in other frameworks in order to utilize additional multi- or many-core devices. On the other hand, OpenCL provides an open and vendorneutral programming environment and runtime system. With implementations available for CPUs, GPUs, and other types of accelerators, OpenCL therefore holds the promise of a “write once, run anywhere” ecosystem for heterogeneous computing. Given the many similarities between CUDA and OpenCL, manually porting a CUDA application to OpenCL is typically straightforward, albeit tedious and error-prone. In response to this issue, we created CU2CL, an automated CUDA-to- OpenCL source-to-source translator that possesses a novel design and clever reuse of the Clang compiler framework. Currently, the CU2CL translator covers the primary constructs found in CUDA runtime API, and we have successfully translated many applications from the CUDA SDK and Rodinia benchmark suite. The performance of our automatically translated applications via CU2CL is on par with their manually ported countparts

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well
    • 

    corecore