22,025 research outputs found

    Compositional semantics for real-time distributed computing

    Get PDF
    We give a compositional denotational semantics for a real-time distributed language, based on the linear history semantics for CSP of Francez et al. Concurrent execution is not modelled by interleaving but by an extension of the maximal parallelism model of Salwicki, that allows the modelling of transmission time for communications. The importance of constructing a semantics (and in general a proof theory) for real-time is stressed by such different sources as the problem of formalizing the real-time aspects of Ada and the elimination of errors in real-time flight control software ([Sunday Times 7-22-84])

    Prediction of performance of the DVB-SH system relying on mutual information

    Get PDF
    DVB-SH (Digital Video Broadcasting-Satellite Handled) is a broadcasting standard dedicated to hybrid broadcasting systems combining a satellite and a terrestrial part. On the satellite part, dedicated interleaving and time slicing mechanisms are proposed to mitigate the effects of Land Mobile Satellite (LMS) channel, based on a convolutional interleaver. Depending on the parameters of this interleaver, this mechanism enables to split in time a codeword on duration from 100 ms to about 30s. This mechanism signi?cantly improves the error recovery performance of the code but in literature, exact evaluation at system level of this improvement is missing. The objective of this paper is to propose a prediction method compatible with fast simulations, to quantitatively evaluate the system performance in terms of Packet Error Rate (PER). The main dif?culty is to evaluate the decoding probability of a codeword submitted to several levels of attenuation. The method we propose consists in using as metric the Mutual Information (MI) between coded bit at the emitter side and the received symbol. It is shown that, by averaging the MI over the codeword and by using the decoding performance function g such that PER=g(MI)determined on the Gaussian channel, we can signi?cantly improve the precision of the prediction compared to the two other methods based on SNR and Bit Error Rate (BER). We evaluated these methods on three arti?cial channels where each codeword is transmitted with three or four different levels of attenuations. The prediction error of the SNR-based (resp. the input BER-based) method varies from 0.5 to 1.7 dB (resp. from 0.7 to 1.2 dB) instead of the MI-based method achieves a precision in the order of 0.1 dB in the three cases. We then evaluate this method on real LMS channels with various DVB-SH interleavers and show that the instantaneous PER can also be predicted with high accuracy

    Lifeworld Analysis

    Full text link
    We argue that the analysis of agent/environment interactions should be extended to include the conventions and invariants maintained by agents throughout their activity. We refer to this thicker notion of environment as a lifeworld and present a partial set of formal tools for describing structures of lifeworlds and the ways in which they computationally simplify activity. As one specific example, we apply the tools to the analysis of the Toast system and show how versions of the system with very different control structures in fact implement a common control structure together with different conventions for encoding task state in the positions or states of objects in the environment.Comment: See http://www.jair.org/ for any accompanying file
    • 

    corecore