4,445 research outputs found

    Approximate Convex Optimization by Online Game Playing

    Full text link
    Lagrangian relaxation and approximate optimization algorithms have received much attention in the last two decades. Typically, the running time of these methods to obtain a ϵ\epsilon approximate solution is proportional to 1ϵ2\frac{1}{\epsilon^2}. Recently, Bienstock and Iyengar, following Nesterov, gave an algorithm for fractional packing linear programs which runs in 1ϵ\frac{1}{\epsilon} iterations. The latter algorithm requires to solve a convex quadratic program every iteration - an optimization subroutine which dominates the theoretical running time. We give an algorithm for convex programs with strictly convex constraints which runs in time proportional to 1ϵ\frac{1}{\epsilon}. The algorithm does NOT require to solve any quadratic program, but uses gradient steps and elementary operations only. Problems which have strictly convex constraints include maximum entropy frequency estimation, portfolio optimization with loss risk constraints, and various computational problems in signal processing. As a side product, we also obtain a simpler version of Bienstock and Iyengar's result for general linear programming, with similar running time. We derive these algorithms using a new framework for deriving convex optimization algorithms from online game playing algorithms, which may be of independent interest

    Globally Optimal Energy-Efficient Power Control and Receiver Design in Wireless Networks

    Full text link
    The characterization of the global maximum of energy efficiency (EE) problems in wireless networks is a challenging problem due to the non-convex nature of investigated problems in interference channels. The aim of this work is to develop a new and general framework to achieve globally optimal solutions. First, the hidden monotonic structure of the most common EE maximization problems is exploited jointly with fractional programming theory to obtain globally optimal solutions with exponential complexity in the number of network links. To overcome this issue, we also propose a framework to compute suboptimal power control strategies characterized by affordable complexity. This is achieved by merging fractional programming and sequential optimization. The proposed monotonic framework is used to shed light on the ultimate performance of wireless networks in terms of EE and also to benchmark the performance of the lower-complexity framework based on sequential programming. Numerical evidence is provided to show that the sequential fractional programming framework achieves global optimality in several practical communication scenarios.Comment: Accepted for publication in the IEEE Transactions on Signal Processin

    MM Algorithms for Geometric and Signomial Programming

    Full text link
    This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.Comment: 16 pages, 1 figur

    A specialized interior-point algorithm for huge minimum convex cost flows in bipartite networks

    Get PDF
    Research Report UPC-DEIO DR 2018-01. November 2018The computation of the Newton direction is the most time consuming step of interior-point methods. This direction was efficiently computed by a combination of Cholesky factorizations and conjugate gradients in a specialized interior-point method for block-angular structured problems. In this work we apply this algorithmic approach to solve very large instances of minimum cost flows problems in bipartite networks, for convex objective functions with diagonal Hessians (i.e., either linear, quadratic or separable nonlinear objectives). After analyzing the theoretical properties of the interior-point method for this kind of problems, we provide extensive computational experiments with linear and quadratic instances of up to one billion arcs and 200 and five million nodes in each subset of the node partition. For linear and quadratic instances our approach is compared with the barriers algorithms of CPLEX (both standard path-following and homogeneous-self-dual); for linear instances it is also compared with the different algorithms of the state-of-the-art network flow solver LEMON (namely: network simplex, capacity scaling, cost scaling and cycle canceling). The specialized interior-point approach significantly outperformed the other approaches in most of the linear and quadratic transportation instances tested. In particular, it always provided a solution within the time limit and it never exhausted the 192 Gigabytes of memory of the server used for the runs. For assignment problems the network algorithms in LEMON were the most efficient option.Peer ReviewedPreprin

    An SDP Approach For Solving Quadratic Fractional Programming Problems

    Full text link
    This paper considers a fractional programming problem (P) which minimizes a ratio of quadratic functions subject to a two-sided quadratic constraint. As is well-known, the fractional objective function can be replaced by a parametric family of quadratic functions, which makes (P) highly related to, but more difficult than a single quadratic programming problem subject to a similar constraint set. The task is to find the optimal parameter λ∗\lambda^* and then look for the optimal solution if λ∗\lambda^* is attained. Contrasted with the classical Dinkelbach method that iterates over the parameter, we propose a suitable constraint qualification under which a new version of the S-lemma with an equality can be proved so as to compute λ∗\lambda^* directly via an exact SDP relaxation. When the constraint set of (P) is degenerated to become an one-sided inequality, the same SDP approach can be applied to solve (P) {\it without any condition}. We observe that the difference between a two-sided problem and an one-sided problem lies in the fact that the S-lemma with an equality does not have a natural Slater point to hold, which makes the former essentially more difficult than the latter. This work does not, either, assume the existence of a positive-definite linear combination of the quadratic terms (also known as the dual Slater condition, or a positive-definite matrix pencil), our result thus provides a novel extension to the so-called "hard case" of the generalized trust region subproblem subject to the upper and the lower level set of a quadratic function.Comment: 26 page
    • …
    corecore