1,920 research outputs found

    A discrete history of the Lorentzian path integral

    Get PDF
    In these lecture notes, I describe the motivation behind a recent formulation of a non-perturbative gravitational path integral for Lorentzian (instead of the usual Euclidean) space-times, and give a pedagogical introduction to its main features. At the regularized, discrete level this approach solves the problems of (i) having a well-defined Wick rotation, (ii) possessing a coordinate-invariant cutoff, and (iii) leading to_convergent_ sums over geometries. Although little is known as yet about the existence and nature of an underlying continuum theory of quantum gravity in four dimensions, there are already a number of beautiful results in d=2 and d=3 where continuum limits have been found. They include an explicit example of the inequivalence of the Euclidean and Lorentzian path integrals, a non-perturbative mechanism for the cancellation of the conformal factor, and the discovery that causality can act as an effective regulator of quantum geometry.Comment: 38 pages, 16 figures, typos corrected, some comments and references adde

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    • …
    corecore