211 research outputs found

    Combining task and motion planning for mobile manipulators

    Get PDF
    Aplicat embargament des de la data de defensa fins el dia 31/12/2019Premi Extraordinari de Doctorat, promoció 2018-2019. Àmbit d’Enginyeria IndustrialThis thesis addresses the combination of task and motion planning which deals with different types of robotic manipulation problems. Manipulation problems are referred to as mobile manipulation, collaborative multiple mobile robots tasks, and even higher dimensional tasks (like bi-manual robots or mobile manipulators). Task and motion planning problems needs to obtain a geometrically feasible manipulation plan through symbolic and geometric search space. The combination of task and motion planning levels has emerged as a challenging issue as the failure leads robots to dead-end tasks due to geometric constraints. In addition, task planning is combined with physics-based motion planning and information to cope with manipulation tasks in which interactions between robots and objects are required, or also a low-cost feasible plan in terms of power is looked for. Moreover, combining task and motion planning frameworks is enriched by introducing manipulation knowledge. It facilitates the planning process and aids to provide the way of executing symbolic actions. Combining task and motion planning can be considered under uncertain information and with human-interaction. Uncertainty can be viewed in the initial state of the robot world or the result of symbolic actions. To deal with such issues, contingent-based task and motion planning is proposed using a perception system and human knowledge. Also, robots can ask human for those tasks which are difficult or infeasible for the purpose of collaboration. An implementation framework to combine different types of task and motion planning is presented. All the required modules and tools are also illustrated. As some task planning algorithms are implemented in Prolog or C++ languages and our geometric reasoner is developed in C++, the flow of information between different languages is explained.Aquesta tesis es centra en les eines de planificació combinada a nivell de tasca i a nivell de moviments per abordar diferents problemes de manipulació robòtica. Els problemes considerats són de navegació de robots mòbil enmig de obstacles no fixes, tasques de manipulació cooperativa entre varis robots mòbils, i tasques de manipulació de dimensió més elevada com les portades a terme amb robots bi-braç o manipuladors mòbils. La planificació combinada de tasques i de moviments ha de cercar un pla de manipulació que sigui geomètricament realitzable, a través de d'un espai de cerca simbòlic i geomètric. La combinació dels nivells de planificació de tasca i de moviments ha sorgit com un repte ja que les fallades degudes a les restriccions geomètriques poden portar a tasques sense solució. Addicionalment, la planificació a nivell de tasca es combina amb informació de la física de l'entorn i amb mètodes de planificació basats en la física, per abordar tasques de manipulació en les que la interacció entre el robot i els objectes és necessària, o també si es busca un pla realitzable i amb un baix cost en termes de potència. A més, el marc proposat per al combinació de la planificació a nivell de tasca i a nivell de moviments es millora mitjançant l'ús de coneixement, que facilita el procés de planificació i ajuda a trobar la forma d'executar accions simbòliques. La combinació de nivells de planificació també es pot considerar en casos d'informació incompleta i en la interacció humà-robot. La incertesa es considera en l'estat inicial i en el resultat de les accions simbòliques. Per abordar aquest problema, es proposa la planificació basada en contingències usant un sistema de percepció i el coneixement de l'operari humà. Igualment, els robots poden demanar col·laboració a l'operari humà per a que realitzi aquelles accions que són difícils o no realitzables pel robot. Es presenta també un marc d'implementació per a la combinació de nivells de planificació usant diferents mètodes, incloent tots els mòduls i eines necessàries. Com que alguns algorismes estan implementats en Prolog i d'altres en C++, i el mòdul de raonament geomètric proposat està desenvolupat en C++, es detalla el flux d'informació entre diferents llenguatges.Award-winningPostprint (published version

    Combined heuristic task and motion planning for bi-manual robots

    Get PDF
    Planning efficiently at task and motion levels allows the setting of new challenges for robotic manipulation problems, like for instance constrained table-top problems for bi-manual robots. In this scope, the appropriate combination of task and motion planning levels plays an important role. Accordingly, a heuristic-based task and motion planning approach is proposed, in which the computation of the heuristic addresses a geometrically relaxed problem, i.e., it only reasons upon objects placements, grasp poses, and inverse kinematics solutions. Motion paths are evaluated lazily, i.e., only after an action has been selected by the heuristic. This reduces the number of calls to the motion planner, while backtracking is reduced because the heuristic captures most of the geometric constraints. The approach has been validated in simulation and on a real robot, with different classes of table-top manipulation problems. Empirical comparison with recent approaches solving similar problems is also reported, showing that the proposed approach results in significant improvement both in terms of planing time and success rate.Peer ReviewedPostprint (author's final draft

    Knowledge-oriented task and motion planning for multiple mobile robots

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of experimental and theoretical artificial intelligence, published online: 30 Nov 2018 available online: https://www.tandfonline.com/doi/abs/10.1080/0952813X.2018.1544280Robotic systems composed of several mobile robots moving in human environments pose several problems at perception, planning and control levels. In these environments, there may be obstacles obstructing the paths, which robots can remove by pushing or pulling them. At planning level, therefore, an efficient combination of task and motion planning is required. Even more if we assume a cooperative system in which robots can collaborate with each other by e.g. pushing together a heavy obstacle or by one robot clearing the way to another one. In this paper, we cope with this problem by proposing ¿-TMP, a smart combination of an heuristic task planner based on the Fast Forward method, a physics-based motion planner, and reasoning processes over the ontologies that code the knowledge on the problem. The significance of the proposal relies on how geometric and physics information is used within the computation of the heuristics in order to guide the symbolic search, i.e. how an artificial intelligence planning method is combined with low-level motion planning to achieve a feasible sequence of actions (composed of collision-free motions plus physically-feasible push/pull actions). The proposal has been validated with several simulated scenarios (using up to five robots that need to collaborate with each other to reach the goal state), showing how the method is able to solve challenging situations and also find an efficient solution in terms of power.Peer ReviewedPostprint (author's final draft

    Integrated task and motion planning using physics-based heuristics

    Get PDF
    —This work presents a knowledge-based task and motion planning framework based on a version of the FastForward task planner. A reasoning process on symbolic literals in terms of knowledge and geometric information about the workspace, together with the use of a physics-based motion planner, is proposed to evaluate the applicability and feasibility of manipulation actions and to compute the heuristic values that guide the search. The proposal results in low-cost physically-feasible plansPeer ReviewedPostprint (published version

    Learning Symbolic Operators for Task and Motion Planning

    Full text link
    Robotic planning problems in hybrid state and action spaces can be solved by integrated task and motion planners (TAMP) that handle the complex interaction between motion-level decisions and task-level plan feasibility. TAMP approaches rely on domain-specific symbolic operators to guide the task-level search, making planning efficient. In this work, we formalize and study the problem of operator learning for TAMP. Central to this study is the view that operators define a lossy abstraction of the transition model of a domain. We then propose a bottom-up relational learning method for operator learning and show how the learned operators can be used for planning in a TAMP system. Experimentally, we provide results in three domains, including long-horizon robotic planning tasks. We find our approach to substantially outperform several baselines, including three graph neural network-based model-free approaches from the recent literature. Video: https://youtu.be/iVfpX9BpBRo Code: https://git.io/JCT0gComment: IROS 202

    FFRob: An Efficient Heuristic for Task and Motion Planning

    Get PDF
    Manipulation problemsinvolvingmany objects present substantial challenges for motion planning algorithms due to the high dimensionality and multi-modality of the search space. Symbolic task planners can efficiently construct plans involving many entities but cannot incorporate the constraints from geometry and kinematics. In this paper, we show how to extend the heuristic ideas from one of the most successful symbolic planners in recent years, the FastForward (FF) planner, to motion planning, and to compute it efficiently. We use a multi-query roadmap structure that can be conditionalized to model different placements of movable objects. The resulting tightly integrated planner is simple and performs efficiently in a collection of tasks involving manipulation of many objects.National Science Foundation (U.S.) (Grant No. 019868)United States. Office of Naval Research. Multidisciplinary University Research Initiative (grant N00014-09-1-1051)United States. Air Force. Office of Scientific Research (grant AOARD-104135)Singapore. Ministry of Educatio

    Scene modeling based on constraint system decomposition techniques

    Full text link
    corecore