5,891 research outputs found

    An interdisciplinary modelling framework for selecting adaptation measures at the river basin scale in a global change scenario

    Full text link
    Shaping global change adaptation strategy in water resource systems requires an interdisciplinary approach to deal with the multiple dimensions of the problem. The modelling framework presented integrates climate, economic, agronomic and hydrological scenarios to design a programme of adaptation measures at the river basin scale. Future demand scenarios; combined with a down-scaled climate scenario, provide the basis to estimate the demand and water resources in 2030. A least-cost river basin optimisation model is then applied to select adaptation measures ensuring that environmental and supply management goals are achieved. In the Orb river basin (France), the least-cost portfolio selected suggests mixing demand and supply side measures to adapt to global change. Trade-offs among the cost of the programme of measures, the deficit in agricultural water supply and the level of environmental flows are investigated. The challenges to implement such interdisciplinary approaches in the definition of adaptation strategies are finally discussed. (C) 2015 Elsevier Ltd. All rights reserved.The study has been partially supported by ONEMA, by the Scarce Project (Consolider-Ingenio 2010 CSD2009-00065) and IMPADAPT project (CGL2013-48424-C2-1-R) of the Spanish ministry MINECO (Ministerio de Economia y Competitividad) with European FEDER funds. Corentin Girard is supported by a grant from the University Lecturer Training Program (FPU12/03803) of the Ministry of Education, Culture and Sports of Spain. We also acknowledge the CERFACS for the climate scenarios provided from their SCRATCH 2010 dataset (March 2012 release - http://www.cerfacs.fr/similar to page/work/scratch/). We are very grateful to S. Chazot (BRLi), E. Vier and F. Aigoui (GINGERGROUP) and L. Rippert and its team from the SMVOL for their advice during the research and for the data provided. We thank as well the anonymous reviewers, and the Editor-in-Chief of Environmental Modelling and Software, Anthony Jakeman, for their support in the improvement of the manuscript and their encouraging comments.Girard, CDP.; Rinaudo, J.; Pulido-Velazquez, M.; Caballero, Y. (2015). An interdisciplinary modelling framework for selecting adaptation measures at the river basin scale in a global change scenario. Environmental Modelling and Software. 69:42-54. https://doi.org/10.1016/j.envsoft.2015.02.023S42546

    Economic Value of Climate Change Adaptation Strategies for Water Management in Spain s Jucar Basin

    Full text link
    [EN] Although many recent studies have quantified the potential effects of climate change on water resource systems, the scientific community faces now the challenge of developing methods for assessing and selecting climate change adaptation options. This paper presents a method for assessing impacts and adaptation strategies to global change in a river basin system at different temporal horizons using a hydro-economic model. First, a multiobjective analysis selects climate change projections based on the fitting of the climate models to the historical conditions for the historical period. Inflows for climate change scenarios are generated using calibrated rainfall-runoff models, perturbing observed meteorological time series according to the projected anomalies in mean and standard deviation. Demands are projected for the different scenarios and characterized using economic demand curves. With the new water resource and demand scenarios, the impact of global change on system performance is assessed using a hydro-economic model with reliability and economic indices. A new economic loss index is defined to assess the economic equity of the system. Selected adaptation strategies are simulated to compare performance with the business-as-usual scenario. The approach is applied to the Jucar River water resource system, in eastern Spain, using climate projections from the European Union (EU) ENSEMBLES project. Results show that the system is vulnerable to global change, especially over the long term, and that adaptation actions can save Euro3-65million/year. (C) 2017 American Society of Civil Engineers.This research was partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R and CGL2013-48424-C2-2-R) of the National Research Plan (Plan Estatal I+D+I 2013-2016), funded by the Spanish Ministry MINECO (Ministerio de Economia y Competitividad) and European Federation funds. It was also partially funded by the PMAFI06/14 project (UCAM). The work was also partially supported by a stay grant from the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering-TEE Project. The authors would like to thank Professor Jay R. Lund (University of California, Davis) for his insights. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract Number 505539) whose support is gratefully acknowledged. The data can be downloaded from http://ensembles-eu.metoffice.com/.Escrivà Bou, À.; Pulido-Velazquez, M.; Pulido-Velázquez, D. (2017). Economic Value of Climate Change Adaptation Strategies for Water Management in Spain s Jucar Basin. Journal of Water Resources Planning and Management. 143(5):1-13. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000735S113143

    Improved Methods and Metrics for Assessing Impacts, Vulnerability and Adaptation

    Get PDF
    Over the course of the MEDIATION project, Work Package 2 was tasked with "develop[ing] and apply[ing] a toolbox, defined as a set of models, methods, and metrics for the assessment of impacts and vulnerability and adaptation options." As highlighted in Deliverable 2.2, many frameworks and methods for assessing adaptation have been developed over the last 20 years, yet these often have not been adopted in the context of formal adaptation policies in Europe and elsewhere. Reasons and problems include: (i) a fragmentation of methods and tools, (ii) a lack of linkages to actual policy needs, (iii) a lack of understanding and communication of uncertainties, (iv) the often expert-based nature and complexity of methods used versus actual user demands, and (v) a lack of consistent data, definitions and metrics. Deliverable 2.2 put forward a rough prototype for a toolbox of methods for studying impacts, vulnerability, and adaptation. In this deliverable, we discuss subsequent work on the MEDIATION toolbox, and report on application and testing of the improved methods and metrics in selected key European sectors and regions. We present feedback and improvement to methods and metrics based on input from case studies, stakeholders, and focus groups, as well as an overview of case study work and contribution to an improved MEDIATION toolbox. This input resulted in a number of conclusions relating to the development and use of methods and metrics, reducing uncertainty in CCIAV, and led to a number of changes, including the creation of a novel typology for classifying methods and models relating to CCIAV analysis. We provide an overview of the new typology, as well as the final toolbox, and summarize case study contributions towards improved methods and metrics

    Comparitive assessment of the vulnerability and resilience of 10 deltas, synthesis report

    Get PDF
    The proposed framework for delta assessment and especially the scorecards are intended to enhance awareness raising, discussion and prioritization on most relevant delta issues, in each delta but also in comparison with other deltas. This should lead to more efficient and effective (multi-sectoral) policy formulation, management design and implementation, in concrete Delta plans, pilot-projects and (research) programmes. The target groups are all stakeholders who are involved in delta management at different levels and with different interests (government, private companies, NGOs, public), and who wish to contribute to the resilience of their own delta and other deltas worldwide

    Challenges and lessons learned from integrated landscape management projects

    Get PDF
    There are growing concerns about local and regional ecosystems and their vulnerability in relation to human activities. This case study evaluates 10 Integrated Land Management (ILM) projects from Canada, the U.S. and Europe to provide information that will help promote better awareness of potential environmental and cumulative impacts due to development priorities and choices. ILM builds on a spectrum of approaches including integrated resource management, integrated watershed management, comprehensive regional land use planning and ecosystem-based management. The study found that ILM..

    Sharing the cost of river basin adaptation portfolios to climate change: Insights from social justice and cooperative game theory

    Full text link
    [EN] The adaptation of water resource systems to the potential impacts of climate change requires mixed portfolios of supply and demand adaptation measures. The issue is not only to select efficient, robust, and flexible adaptation portfolios but also to find equitable strategies of cost allocation among the stakeholders. Our work addresses such cost allocation problems by applying two different theoretical approaches: social justice and cooperative game theory in a real case study. First of all, a cost-effective portfolio of adaptation measures at the basin scale is selected using a least-cost optimization model. Cost allocation solutions are then defined based on economic rationality concepts from cooperative game theory (the Core). Second, interviews are conducted to characterize stakeholders perceptions of social justice principles associated with the definition of alternatives cost allocation rules. The comparison of the cost allocation scenarios leads to contrasted insights in order to inform the decision-making process at the river basin scale and potentially reap the efficiency gains from cooperation in the design of river basin adaptation portfolios.The study has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) from the Spanish ministry MINECO (Ministerio de Economia y Competitividad) with European FEDER funds. The first author is supported by a grant from the University Lecturer Training Program (FPU12/03803) of the Ministry of Education, Culture and Sports of Spain. The second author is financially supported by BRGM's research program 30 (environmental and risk economics). Readers interested in the data can request those by e-mail to Corentin Girard, [email protected], CDP.; Rinaudo, J.; Pulido-Velazquez, M. (2016). Sharing the cost of river basin adaptation portfolios to climate change: Insights from social justice and cooperative game theory. Water Resources Research. 52(10):7945-7962. https://doi.org/10.1002/2016WR018757794579625210Benzie, M. (2014). Social Justice and Adaptation in the UK. Ecology and Society, 19(1). doi:10.5751/es-06252-190139Bruce, C., & Madani, K. (2015). Successful Collaborative Negotiation over Water Policy: Substance versus Process. Journal of Water Resources Planning and Management, 141(9), 04015009. doi:10.1061/(asce)wr.1943-5452.0000517Chazot , S. 2011 http://www.vallees-orb-libron.fr/wp-content/uploads/2012/12/etude-gestion-Monts-Orb-Rapport-V16.pdfChazot , S. T. Norotte J. David 2012 Rapport Final du Projet Explore 2070, BRLi-Irstea-Météo France [in French]Direction Générale des Collectivités Locales (DGCL) 2013 http://www.observatoire-des-territoires.gouv.fr/observatoire-des-territoires/es/potentiel-financier-par-habitantDinar, A., & Howitt, R. E. (1997). Mechanisms for Allocation of Environmental Control Cost: Empirical Tests of Acceptability and Stability. Journal of Environmental Management, 49(2), 183-203. doi:10.1006/jema.1995.0088Driessen, T. S. H., & Tijs, S. H. (1985). The Cost Gap Method and Other Cost Allocation Methods For Multipurpose Water Projects. Water Resources Research, 21(10), 1469-1475. doi:10.1029/wr021i010p01469European Commission (EC) 2009 Guidance Doc. 24Eek, D., & Biel, A. (2003). Social Justice Research, 16(3), 195-215. doi:10.1023/a:1025984611796Girard , C. 2015 10.4995/Thesis/10251/59461Girard, C., Rinaudo, J.-D., Pulido-Velazquez, M., & Caballero, Y. (2015). An interdisciplinary modelling framework for selecting adaptation measures at the river basin scale in a global change scenario. Environmental Modelling & Software, 69, 42-54. doi:10.1016/j.envsoft.2015.02.023Girard, C., Pulido-Velazquez, M., Rinaudo, J.-D., Pagé, C., & Caballero, Y. (2015). Integrating top–down and bottom–up approaches to design global change adaptation at the river basin scale. Global Environmental Change, 34, 132-146. doi:10.1016/j.gloenvcha.2015.07.002Girard, C., Rinaudo, J.-D., & Pulido-Velazquez, M. (2015). Index-Based Cost-Effectiveness Analysis vs. Least-Cost River Basin Optimization Model: Comparison in the Selection of a Programme of Measures at the River Basin Scale. Water Resources Management, 29(11), 4129-4155. doi:10.1007/s11269-015-1049-0Graham, S., Barnett, J., Fincher, R., Mortreux, C., & Hurlimann, A. (2014). Towards fair local outcomes in adaptation to sea-level rise. Climatic Change, 130(3), 411-424. doi:10.1007/s10584-014-1171-7Hallegatte, S. (2009). Strategies to adapt to an uncertain climate change. Global Environmental Change, 19(2), 240-247. doi:10.1016/j.gloenvcha.2008.12.003Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-Azuara, J., Lund, J. R., & Howitt, R. E. (2009). Hydro-economic models: Concepts, design, applications, and future prospects. Journal of Hydrology, 375(3-4), 627-643. doi:10.1016/j.jhydrol.2009.06.037Heaney, J. P., & Dickinson, R. E. (1982). Methods for apportioning the cost of a water resource project. Water Resources Research, 18(3), 476-482. doi:10.1029/wr018i003p00476Hughes, S. (2013). Justice in Urban Climate Change Adaptation: Criteria and Application to Delhi. Ecology and Society, 18(4). doi:10.5751/es-05929-180448Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2014). Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive strategies for a deeply uncertain world. Climatic Change, 132(3), 373-386. doi:10.1007/s10584-014-1210-4Lamont , J. C. Favor 2013 Stanford Encyclopedia of Philosophy E. N. Zalta 1 46,Lawrence, R. L., Daniels, S. E., & Stankey, G. H. (1997). Procedural justice and public involvement in natural resource decision making. Society & Natural Resources, 10(6), 577-589. doi:10.1080/08941929709381054Lejano, R. P., & Davos, C. A. (1995). Cost Allocation of Multiagency Water Resource Projects: Game Theoretic Approaches and Case Study. Water Resources Research, 31(5), 1387-1393. doi:10.1029/95wr00322Lempert, R. J., & Groves, D. G. (2010). Identifying and evaluating robust adaptive policy responses to climate change for water management agencies in the American west. Technological Forecasting and Social Change, 77(6), 960-974. doi:10.1016/j.techfore.2010.04.007Loehman, E., Orlando, J., Tschirhart, J., & Whinston, A. (1979). Cost allocation for a regional wastewater treatment system. Water Resources Research, 15(2), 193-202. doi:10.1029/wr015i002p00193Madani, K. (2010). Game theory and water resources. Journal of Hydrology, 381(3-4), 225-238. doi:10.1016/j.jhydrol.2009.11.045Madani, K., & Hooshyar, M. (2014). A game theory–reinforcement learning (GT–RL) method to develop optimal operation policies for multi-operator reservoir systems. Journal of Hydrology, 519, 732-742. doi:10.1016/j.jhydrol.2014.07.061Ministère de l'Energie et du Développement Durable (MEDDE) 2012Mill , J. 1861 Utilitarianism, Liberty, and Responsive Government, Equity and Justice in Social BehaviourMontet, C., & Serra, D. (2003). Game Theory and Economics. doi:10.1007/978-1-137-08289-3Moreau, C., Rinaudo, J.-D., & Garin, P. (2015). La justice sociale dans la construction du jugement d’acceptabilité. Analyse des réactions d’agriculteurs face à différentes règles de partage de l’eau souterraine. Économie rurale, (346), 31-48. doi:10.4000/economierurale.4612Neal, M. J., Lukasiewicz, A., & Syme, G. J. (2014). Why justice matters in water governance: some ideas for a ‘water justice framework’. Water Policy, 16(S2), 1-18. doi:10.2166/wp.2014.109Nielsen, K. (1979). Radical Egalitarian Justice. Social Theory and Practice, 5(2), 209-226. doi:10.5840/soctheorpract1979523Olmstead, S. M. (2014). Climate change adaptation and water resource management: A review of the literature. Energy Economics, 46, 500-509. doi:10.1016/j.eneco.2013.09.005Paavola, J. (2008). Science and social justice in the governance of adaptation to climate change. Environmental Politics, 17(4), 644-659. doi:10.1080/09644010802193609Paavola, J., & Adger, W. N. (2006). Fair adaptation to climate change. Ecological Economics, 56(4), 594-609. doi:10.1016/j.ecolecon.2005.03.015Parrachino , I. A. Dinar F. Patrone 2005 Policy Res. Working Pap. 4074Rinaudo, J.-D., Calatrava, J., & De Byans, M. V. (2015). Tradable water saving certificates to improve urban water use efficiency: an ex-ante evaluation in a French case study. Australian Journal of Agricultural and Resource Economics, 60(3), 422-441. doi:10.1111/1467-8489.12132Sadurski, W. (1985). Giving Desert Its Due. Law and Philosophy Library. doi:10.1007/978-94-015-7706-9Sechi, G. M., Zucca, R., & Zuddas, P. (2012). Water Costs Allocation in Complex Systems Using a Cooperative Game Theory Approach. Water Resources Management, 27(6), 1781-1796. doi:10.1007/s11269-012-0171-5Straffin, P. D., & Heaney, J. P. (1981). Game theory and the tennessee valley authority. International Journal of Game Theory, 10(1), 35-43. doi:10.1007/bf01770069Syme, G. J. (2011). Justice and Environmental Decision Making. Justice and Conflicts, 283-295. doi:10.1007/978-3-642-19035-3_17Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4), 485-498. doi:10.1175/bams-d-11-00094.1Terray, L., & Boé, J. (2013). Quantifying 21st-century France climate change and related uncertainties. Comptes Rendus Geoscience, 345(3), 136-149. doi:10.1016/j.crte.2013.02.003Thomas, D. S. G., & Twyman, C. (2005). Equity and justice in climate change adaptation amongst natural-resource-dependent societies. Global Environmental Change, 15(2), 115-124. doi:10.1016/j.gloenvcha.2004.10.001Vernier , M. J. D. Rinaudo 2012 Rap. BRGM/RP-61317-FR http://infoterre.brgm.fr/rapports/RP-61317-FR.pdfWalker, W., Haasnoot, M., & Kwakkel, J. (2013). Adapt or Perish: A Review of Planning Approaches for Adaptation under Deep Uncertainty. Sustainability, 5(3), 955-979. doi:10.3390/su5030955Ward, F. A., & Pulido-Velázquez, M. (2008). Efficiency, equity, and sustainability in a water quantity–quality optimization model in the Rio Grande basin. Ecological Economics, 66(1), 23-37. doi:10.1016/j.ecolecon.2007.08.018Ward, F. A., & Pulido-Velazquez, M. (2009). Incentive pricing and cost recovery at the basin scale. Journal of Environmental Management, 90(1), 293-313. doi:10.1016/j.jenvman.2007.09.009Young, H. P. (1994). Chapter 34 Cost allocation. Handbook of Game Theory with Economic Applications, 1193-1235. doi:10.1016/s1574-0005(05)80066-9Young, H. P., Okada, N., & Hashimoto, T. (1982). Cost allocation in water resources development. Water Resources Research, 18(3), 463-475. doi:10.1029/wr018i003p00463Zwarteveen, M. Z., & Boelens, R. (2014). Defining, researching and struggling for water justice: some conceptual building blocks for research and action. Water International, 39(2), 143-158. doi:10.1080/02508060.2014.89116

    Climate research Netherlands : research highlights

    Get PDF
    In the Netherlands the temperature has risen, on average, by 1.6°C since 1900. Regional climate scenarios for the 21st century developed by the Dutch Royal Meteorological Institute [1] show that temperature in the Netherlands will continue to rise and mild winters and hot summers will become more common. On average winters will become wetter and extreme precipitation amounts will increase. The intensity of extreme rain showers in summer will increase and the sea level will continue to rise. Changing climate will affect all segments and sectors of the society and the economy of the Netherlands, but it also brings new opportunities for major innovation
    corecore