950 research outputs found

    Craniofacial Growth Series Volume 56

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/153991/1/56th volume CF growth series FINAL 02262020.pdfDescription of 56th volume CF growth series FINAL 02262020.pdf : Proceedings of the 46th Annual Moyers Symposium and 44th Moyers Presymposiu

    Technology-enhanced simulation-based learning in orthodontic education: A scoping review

    Get PDF
    ABSTRACT Introduction: Technology-enhanced simulations seem to be effective in dentistry, as they can support dental students to improve competencies in simulated environments. However, implementation of this technology in orthodontic education has not been reviewed. Objective: This scoping review aimed to comprehensively summarize the use of technology-enhanced simulations in orthodontic practice. Methods: A systematic search was conducted to identify literature on technology-enhanced simulation-based learning in orthodontic education published from 2000 to 2021. The search was conducted up to September 2021 to identify articles from Scopus, Embase, PubMed, ProQuest Dissertations & Theses Global, Google Scholar and the reference lists of identified articles. Results: The search identified 177 articles. Following the inclusion and exclusion criteria, 16 articles of 14 digital simulators were included in this review. The findings demonstrated an increasing use of technology-enhanced simulations in orthodontic education. They were designed in several formats, including three-dimensional virtual format, augmented reality, virtual reality, automaton, haptic, and scenario-based simulations. These simulations were implemented in varied areas of orthodontics including diagnosis and treatment planning, bracket positioning, orthodontic procedures, facial landmark, removable appliance and cephalometric tracing. Most included articles demonstrated the development process without outcome evaluation. Six studies provided outcome evaluations at reaction or learning levels. None of them provide the evaluation at behaviour and results levels. Conclusion: Insufficient evidence has been generated to demonstrate the effectiveness of technology-enhanced simulations in orthodontic education. However, high-fidelity computer-based simulations together with robust design research should be required to confirm educational impact in orthodontic education

    Physical and statistical shape modelling in craniomaxillofacial surgery: a personalised approach for outcome prediction

    Get PDF
    Orthognathic surgery involves repositioning of the jaw bones to restore face function and shape for patients who require an operation as a result of a syndrome, due to growth disturbances in childhood or after trauma. As part of the preoperative assessment, three-dimensional medical imaging and computer-assisted surgical planning help to improve outcomes, and save time and cost. Computer-assisted surgical planning involves visualisation and manipulation of the patient anatomy and can be used to aid objective diagnosis, patient communication, outcome evaluation, and surgical simulation. Despite the benefits, the adoption of three-dimensional tools has remained limited beyond specialised hospitals and traditional two-dimensional cephalometric analysis is still the gold standard. This thesis presents a multidisciplinary approach to innovative surgical simulation involving clinical patient data, medical image analysis, engineering principles, and state-of-the-art machine learning and computer vision algorithms. Two novel three-dimensional computational models were developed to overcome the limitations of current computer-assisted surgical planning tools. First, a physical modelling approach – based on a probabilistic finite element model – provided patient-specific simulations and, through training and validation, population-specific parameters. The probabilistic model was equally accurate compared to two commercial programs whilst giving additional information regarding uncertainties relating to the material properties and the mismatch in bone position between planning and surgery. Second, a statistical modelling approach was developed that presents a paradigm shift in its modelling formulation and use. Specifically, a 3D morphable model was constructed from 5,000 non-patient and orthognathic patient faces for fully-automated diagnosis and surgical planning. Contrary to traditional physical models that are limited to a finite number of tests, the statistical model employs machine learning algorithms to provide the surgeon with a goal-driven patient-specific surgical plan. The findings in this thesis provide markers for future translational research and may accelerate the adoption of the next generation surgical planning tools to further supplement the clinical decision-making process and ultimately to improve patients’ quality of life

    Robotics in Dentistry : A Narrative Review

    Get PDF
    Background: Robotics is progressing rapidly. The aim of this study was to provide a comprehensive overview of the basic and applied research status of robotics in dentistry and discusses its development and application prospects in several major professional fields of dentistry. Methods: A literature search was conducted on databases: MEDLINE, IEEE and Cochrane Library, using MeSH terms: [“robotics” and “dentistry”]. Result: Forty-nine articles were eventually selected according to certain inclusion criteria. There were 12 studies on prosthodontics, reaching 24%; 11 studies were on dental implantology, accounting for 23%. Scholars from China published the most articles, followed by Japan and the United States. The number of articles published between 2011 and 2015 was the largest. Conclusions: With the advancement of science and technology, the applications of robots in dental medicine has promoted the development of intelligent, precise, and minimally invasive dental treatments. Currently, robots are used in basic and applied research in various specialized fields of dentistry. Automatic tooth-crown-preparation robots, tooth-arrangement robots, drilling robots, and orthodontic archwire-bending robots that meet clinical requirements have been developed. We believe that in the near future, robots will change the existing dental treatment model and guide new directions for further development

    Artificial intelligence in dentistry, orthodontics and orthognathic surgery: A literature review

    Get PDF
    Artificial intelligence is the ability of machines to work like humans. The concept initially began with the advent of mathematical models which gave calculated outputs based on inputs fed into the system. This was later modified with the introduction of various algorithms which can either give output based on overall data analysis or by selection of information within previous data. It is steadily becoming a favoured mode of treatment due to its efficiency and ability to manage complex conditions in all specialities. In dentistry, artificial intelligence has also popularised over the past few decades. They have been found useful for diagnosis in restorative dentistry, oral pathology and oral surgery. In orthodontics, they have been utilised for diagnosis, assessment of treatment needs, cephalometrics, treatment planning and orthognathic surgeries etc. The current literature review was planned to highlight the uses of artificial intelligence in dentistry, specifically in orthodontics and orthognathic surgery

    2023/2024 University of the Pacific San Francisco Catalog

    Get PDF

    A New 3D Tool for Planning Plastic Surgery

    Get PDF
    Face plastic surgery (PS) plays a major role in today medicine. Both for reconstructive and cosmetic surgery, achieving harmony of facial features is an important, if not the major goal. Several systems have been proposed for presenting to patient and surgeon possible outcomes of the surgical procedure. In this paper, we present a new 3D system able to automatically suggest, for selected facial features as nose, chin, etc, shapes that aesthetically match the patient's face. The basic idea is suggesting shape changes aimed to approach similar but more harmonious faces. To this goal, our system compares the 3D scan of the patient with a database of scans of harmonious faces, excluding the feature to be corrected. Then, the corresponding features of the k most similar harmonious faces, as well as their average, are suitably pasted onto the patient's face, producing k+1 aesthetically effective surgery simulations. The system has been fully implemented and tested. To demonstrate the system, a 3D database of harmonious faces has been collected and a number of PS treatments have been simulated. The ratings of the outcomes of the simulations, provided by panels of human judges, show that the system and the underlying idea are effectiv
    • 

    corecore