6,906 research outputs found

    Three-dimensional computerized model of an elastic robotic arm

    Full text link
    Interactive computer simulation software in the area of robotics is becoming increasingly important. The present work involved the creation of a computer simulation software package for an elastic robotic arm. The computer simulation was unique in four major areas. Using a specialized Silicon Graphics IRIS Workstation, a three-dimensional model of the three-link elastic robotic arm, controlled by two hydraulic actuators, was created. The software simulation developed in the present work was highly interactive with the user. The user is able to move the different links, change parameters, and alter dynamic applied forces. The kinematics were modelled. A user was allowed to change the kinematic variables by either moving the different links or by changing the magnitude of the two actuator forces. The deformations of the robotic arm were modelled and presented in both graphic and analytical form

    Object segmentation in depth maps with one user click and a synthetically trained fully convolutional network

    Get PDF
    With more and more household objects built on planned obsolescence and consumed by a fast-growing population, hazardous waste recycling has become a critical challenge. Given the large variability of household waste, current recycling platforms mostly rely on human operators to analyze the scene, typically composed of many object instances piled up in bulk. Helping them by robotizing the unitary extraction is a key challenge to speed up this tedious process. Whereas supervised deep learning has proven very efficient for such object-level scene understanding, e.g., generic object detection and segmentation in everyday scenes, it however requires large sets of per-pixel labeled images, that are hardly available for numerous application contexts, including industrial robotics. We thus propose a step towards a practical interactive application for generating an object-oriented robotic grasp, requiring as inputs only one depth map of the scene and one user click on the next object to extract. More precisely, we address in this paper the middle issue of object seg-mentation in top views of piles of bulk objects given a pixel location, namely seed, provided interactively by a human operator. We propose a twofold framework for generating edge-driven instance segments. First, we repurpose a state-of-the-art fully convolutional object contour detector for seed-based instance segmentation by introducing the notion of edge-mask duality with a novel patch-free and contour-oriented loss function. Second, we train one model using only synthetic scenes, instead of manually labeled training data. Our experimental results show that considering edge-mask duality for training an encoder-decoder network, as we suggest, outperforms a state-of-the-art patch-based network in the present application context.Comment: This is a pre-print of an article published in Human Friendly Robotics, 10th International Workshop, Springer Proceedings in Advanced Robotics, vol 7. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-89327-3\_16, Springer Proceedings in Advanced Robotics, Siciliano Bruno, Khatib Oussama, In press, Human Friendly Robotics, 10th International Workshop,

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy

    Real-time graphic simulation for space telerobotics applications

    Get PDF
    Designing space-based telerobotic systems presents many problems unique to telerobotics and the space environment, but it also shares many common hardware and software design problems with Earth-based industrial robot applications. Such problems include manipulator design and placement, grapple-fixture design, and of course the development of effective and reliable control algorithms. Since first being applied to industrial robotics just a few years ago, interactive graphic simulation has proven to be a powerful tool for anticipating and solving problems in the design of Earth-based robotic systems and processes. Where similar problems are encountered in the design of space-based robotic mechanisms, the same graphic simulation tools may also be of assistance. The capabilities of PLACE, a commercially available interactive graphic system for the design and simulation of robotic systems and processes is described. A space-telerobotics application of the system is presented and discussed. Potential future enhancements are described
    • …
    corecore