538 research outputs found

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis

    Meta-Learning and the Full Model Selection Problem

    Get PDF
    When working as a data analyst, one of my daily tasks is to select appropriate tools from a set of existing data analysis techniques in my toolbox, including data preprocessing, outlier detection, feature selection, learning algorithm and evaluation techniques, for a given data project. This indeed was an enjoyable job at the beginning, because to me finding patterns and valuable information from data is always fun. Things become tricky when several projects needed to be done in a relatively short time. Naturally, as a computer science graduate, I started to ask myself, "What can be automated here?"; because, intuitively, part of my work is more or less a loop that can be programmed. Literally, the loop is "choose, run, test and choose again... until some criterion/goals are met". In other words, I use my experience or knowledge about machine learning and data mining to guide and speed up the process of selecting and applying techniques in order to build a relatively good predictive model for a given dataset for some purpose. So the following questions arise: "Is it possible to design and implement a system that helps a data analyst to choose from a set of data mining tools? Or at least that provides a useful recommendation about tools that potentially save some time for a human analyst." To answer these questions, I decided to undertake a long-term study on this topic, to think, define, research, and simulate this problem before coding my dream system. This thesis presents research results, including new methods, algorithms, and theoretical and empirical analysis from two directions, both of which try to propose systematic and efficient solutions to the questions above, using different resource requirements, namely, the meta-learning-based algorithm/parameter ranking approach and the meta-heuristic search-based full-model selection approach. Some of the results have been published in research papers; thus, this thesis also serves as a coherent collection of results in a single volume

    The state of the art development of AHP (1979-2017): a literature review with a social network analysis

    Get PDF
    Although many papers describe the evolution of the analytic hierarchy process (AHP), most adopt a subjective approach. This paper examines the pattern of development of the AHP research field using social network analysis and scientometrics, and identifies its intellectual structure. The objectives are: (i) to trace the pattern of development of AHP research; (ii) to identify the patterns of collaboration among authors; (iii) to identify the most important papers underpinning the development of AHP; and (iv) to discover recent areas of interest. We analyse two types of networks: social networks, that is, co-authorship networks, and cognitive mapping or the network of disciplines affected by AHP. Our analyses are based on 8441 papers published between 1979 and 2017, retrieved from the ISI Web of Science database. To provide a longitudinal perspective on the pattern of evolution of AHP, we analyse these two types of networks during the three periods 1979–1990, 1991–2001 and 2002–2017. We provide some basic statistics on AHP journals and researchers, review the main topics and applications of integrated AHPs and provide direction for future research by highlighting some open questions
    • …
    corecore