14 research outputs found

    A Hybrid Heuristic for a Broad Class of Vehicle Routing Problems with Heterogeneous Fleet

    Full text link
    We consider a family of Rich Vehicle Routing Problems (RVRP) which have the particularity to combine a heterogeneous fleet with other attributes, such as backhauls, multiple depots, split deliveries, site dependency, open routes, duration limits, and time windows. To efficiently solve these problems, we propose a hybrid metaheuristic which combines an iterated local search with variable neighborhood descent, for solution improvement, and a set partitioning formulation, to exploit the memory of the past search. Moreover, we investigate a class of combined neighborhoods which jointly modify the sequences of visits and perform either heuristic or optimal reassignments of vehicles to routes. To the best of our knowledge, this is the first unified approach for a large class of heterogeneous fleet RVRPs, capable of solving more than 12 problem variants. The efficiency of the algorithm is evaluated on 643 well-known benchmark instances, and 71.70\% of the best known solutions are either retrieved or improved. Moreover, the proposed metaheuristic, which can be considered as a matheuristic, produces high quality solutions with low standard deviation in comparison with previous methods. Finally, we observe that the use of combined neighborhoods does not lead to significant quality gains. Contrary to intuition, the computational effort seems better spent on more intensive route optimization rather than on more intelligent and frequent fleet re-assignments

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems

    Meta-Heuristics for the Multiple Trip Vehicle Routing Problem with Backhauls

    Get PDF
    With the growing and more accessible computational power, the demand for robust and sophisticated computerised optimisation is increasing for logistical problems. By making good use of computational technologies, the research in this thesis concentrates on efficient fleet management by studying a class of vehicle routing problems and developing efficient solution algorithms. The literature review in this thesis looks at VRPs from various development angles. The search reveals that from the problem modelling side clear efforts are made to bring the classical VRP models closer to reality by developing various variants. However, apart from the real VRP applications (termed as 'rich' VRPs), it is also noticeable that these classical VRP based variants address merely one or two additional characteristics from the real routing problem issues, concentrating on either operational (fleet management) or tactical (fleet acquisition) aspects. This thesis certainly hopes to add to one of those good efforts which have helped in bringing the VRPs closer to reality through addressing both the operational as well as the tactical aspects. On the solution methodologies development side, the proposed research noted some considerable and impressive developments. Although, it is well established that the VRPs belong to the NP-hard combinatorial class of problems, there are considerable efforts on the development of exact methods. However the literature is full of a variety of heuristic methodologies including the classical and the most modern hybrid approaches. Among the hybrid approaches, the most recent one noted is mat-heuristics that combine heuristics and mathematical programming techniques to solve combinatorial optimisation problems. The mat-heuristics approaches appear to be comparatively in its infant age at this point in time. However this is an exciting area of research which seeks more attention in the literature. Hence, a good part of this research is devoted to the development of a hybrid approach that combines heuristics and mathematical programming techniques. When reviewing the specific literature on the VRP problems focused in this thesis, the vehicle routing problem with backhauls (VRPB) and the multiple trip vehicle routing problem (MT-VRP), there is not sufficient development on the problem modelling side in terms of bringing these two problems closer to the reality. Hence, to fill the gap this thesis introduces and investigates a new variant, the multiple trip vehicle routing problem with backhauls (MT-VRPB) that combines the above two variants of the VRP. The problem is first described thoroughly and a new ILP (Integer Linear Programming) mathematical formulation of the MT-VRPB along with its possible variations is presented. The MT-VRPB is then solved optimally by using CPLEX along with providing an illustrative example showing the validation of the mathematical formulation. As part of the contribution, a large set of MT-VRPB data instances is created which is made available for future benchmarking. The CPLEX implementation produced optimal solutions for a good number of small and medium size data instances of the MT-VRPB and generated lower bounds for all instances. The CPLEX success may be considered as modest, but the produced results proved very important for the validation of the heuristic results produced in the thesis. To solve the larger instances of the MT-VRPB, a two level VNS algorithm called 'Two-Level VNS' is developed. It was noticed from the literature that the choice of using VNS for the VRPs has increased in recent literature due to its simplicity and speed. However our initial experiments with the classical VNS indicated that the algorithm is more inclined towards the intensification side. Hence, the Two-Level VNS is designed to obtain a maximum balance of the diversification and the intensification during the search process. It is achieved by incorporating a sub-set of neighbourhood structures and a sus-set of local search refinement routines and hence, a full set of neighbourhood structures and a full set of local search refinement routines at two levels of the algorithm respectively. The algorithm found very encouraging results when compared with the solutions found by CPLEX. These findings in this thesis demonstrate the power of VNS yet again in terms of its speed, simplicity and efficiency. To investigate this new variant further, we developed an algorithm belonging to the new class of the hybrid methodologies, i.e., mat-heuristics. A hybrid collaborative sequential mat-heuristic approach called the CSMH to solve the MT-VRPB is developed. The exact method approach produced in Chapter 4 is then hybridised with the Two-Level VNS algorithm developed in Chapter 5. The overall performance of the CSMH remained very encouraging in terms of the solution quality and the time taken on average compared with the CPLEX and the Two-Level VNS meta-heuristic. To demonstrate the power and effectiveness of our methodologies, we tested the designed algorithms on the two special versions of the VRP (i.e., VRPB and MT-VRP) to assess whether they are efficient and dynamic enough to solve a range of VRP variants. Hence the Two-Level VNS and the CSMH algorithms developed to solve the MT-VRPB are adapted accordingly and implemented to solve the two above variants separately. The algorithms produced very competitive results for the benchmark data sets when compared to the best known solutions from the literature. The successful implementations of these algorithms on the three VRP models with only minor amendments prove their generalizability and their robustness. The results in this research show that significant cost savings could be obtained by choosing the right fleet size and better vehicle utilisations with multiple trips and backhauling. Hence, the research proved the justification of studying this interesting combination. Moreover, the problem modelling, efficient algorithm design and implementation, and the research results reveal some vital information and implications from the managerial point of view in terms of making the tactical (fleet acquisition) and the operational (fleet management) decisions in a more informative manner

    Metaheuristic Approaches For Estimating In-Kind Food Donations Availability And Scheduling Food Bank Vehicles

    Get PDF
    Food banks provide services that allow households facing food insecurity to receive nutritious food items. Food banks, however, experience operational challenges as a result of constrained and uncertain supply and complex routing challenges. The goal of this research is to explore opportunities to enhance food bank operations through metaheuristic forecasting and scheduling practices. Knowledge discovery methods and supervised machine learning are used to forecast food availability at supermarkets. In particular, a quasi-greedy algorithm which selects multi-layer perceptron models to represent food availability is introduced. In addition, a new classification of the vehicle routing problem is proposed to manage the distribution and collection of food items. In particular, variants of the periodic vehicle routing problem backhauls are introduced. In addition to discussing model formulations for the routing problems, a hybrid genetic algorithm is introduced which finds good solutions for larger problem instances in a reasonable computation time

    Algoritmos de solución para el problema multidepósito y multiobjetivo de ruteo de vehículos considerando recogida de productos y restricción de precedencia

    Get PDF
    En esta tesis se presenta la aplicación de diferentes técnicas heurísticas y metaheurísticas para la solución del problema de ruteo de vehículos con restricción de precedencia, heurísticas como el vecino más cercano y la del ahorro con inserción secuencial, y metaheurísticas como búsqueda tabú y optimización por colonia de hormigas son utilizadas y ajustadas para resolver eficientemente diferentes variantes del problema de ruteo de vehículos con entrega y recogida de paquetes con restricción de precedencia, considerando el caso monodepósito y multidepósito, mono y multiobjetivo. Cada ruta realizada consta de una sub-ruta en la que se realiza sólo la tarea de entrega y otra sub-ruta en la que se realiza sólo el proceso de recolección, esta última se inicia solo cuando el vehículo está vacío. Los algoritmos y metaheurísticas propuestas tratan de encontrar el mejor orden para visitar a los clientes en cada ruta realizada. Además, el enfoque propuesto determina la mejor conexión entre los sub-rutas de entrega y recogida, con el fin de obtener una solución global minimizando el número de vehículos, la distancia recorrida, el tiempo empleado y la cantidad de energía consumida por los vehículos. El estudio multiobjetivo permitió encontrar un conjunto de soluciones ordenadas en los frentes de Pareto considerando el concepto de dominancia. Adicionalmente, para el modelo multiobjetivo, se plantea la metodología de ponderaciones de los valores de cada función objetivo se selecciona una alternativa de solución con dominancia en el número de vehículos usados. La eficacia del enfoque propuesto se examina teniendo en cuenta un conjunto de casos adaptados de la literatura. También, se propone un modelo exacto, el cual es resuelto mediante la técnica de rutas abiertas con enlace óptimo. Los resultados computacionales muestran resultados de alta calidad en tiempos de procesamiento competitivos. Los resultados computacionales se comparan con los existentes en la literatura especializada y entre los diferentes algoritmos propuestos. Por último, se presentan las conclusiones y sugerencias para trabajos futuros

    Green Logistics : Advanced Methods for Transport Logistics Management Systems Including Platooning and Alternative Fuel Powered Vehicles

    Get PDF
    Green Logistics has attracted increased attention from researchers during the last few years, due to the growing environmental awareness. Road Transport is a major factor in climate change and accounts for a large proportion of the total UK emissions, including Carbon Dioxide (CO₂). With traffic and congestion levels growing, efficient routing combined with greener (more environmentally friendly) vehicles will be of great importance. The purpose of this thesis is two-fold: i) to provide an insight into Green Logistics and ways in which green technologies can be combined within the vehicle routing problem and ii) identifying new variants of the Vehicle Routing Problem (VRP) that can be applied to real-life instances; The Platooning Routing Problem with Changing Split Points, and the proposition of a Hyper-Realistic Electric Vehicle Energy Consumption model that can be applied to the E-VRP. A thorough CO₂ experiment was also conducted on a rolling road, providing useful data that future research can use to further increase the accuracy of routing models. The platooning of vehicles proves to be an important technique that can lead to large decreases in fuel consumption and can be easily implemented in most transport systems; the process requires advanced and accurate computer systems that are only now becoming available to manufacturers. The Platooning model is designed and tested within this thesis and it is hoped to spark further interest in this crucial area of research. Extensions to the Platooning Problem include the addition of heterogeneous fleets and how they change the dynamics of the proposed problems, as well as further work on the placement of the critical splitting point. Allowing the consideration of using limited range Electric Vehicles (EVs) as well as Conventional Vehicles (CVs) and Alternative Fuel powered Vehicles (AFVs) can further increase the emission savings and are becoming progressively popular in today's society. We therefore have carried out extensive research around the area of AFV's including detailed battery specifics for EV's. The objective is to minimise the amount of emissions while satisfying the time window requirements of customers maintaining low overall financial costs. The resulting emissions are largely affected by the electricity fuel mix of the country, we found that the indirect EV emissions for a 30kwh EV can vary by as much as 33% throughout the day and as much as 68% throughout the year with different seasons. Various heuristic and metaheuristic solution techniques as well as several classical heuristics are implemented including the Clarke and Wright Savings heuristic algorithm (CWSA), the Sweep Algorithm and the Variable Neighbourhood Search (VNS) method. These heuristic and metaheuristic models are tested on the Christofides et al. datasets and we achieve solutions that are on average 1.67% and 8.5% deviated from the best-known solution for unrestricted route lengths and restricted max route length problems respectively. Following this a platooning model is generated and tested on various datasets, including a real-life example along the roads of the South East of the UK. Platooning proves to bring benefits to the VRP, with the extensions discussed in this thesis providing increased savings to emissions. On three of the dataset problems of the small and medium size problems a significant fuel saving of more than 1% was achieved. With future research and additional avenues explored Platooning can make a significant reduction to emissions and make an impact on improving air quality. The EV model proposed is designed to trigger further research on ultra-realistic energy models with the aim of being applied to a real-life organisation with various constraints including factors such as battery health, travel speed, vehicle load and transportation distance. This thesis provides useful insights into how important the aspect of environmental route planning is, providing advice on tangible and intangible benefits such as cost savings and a reduction in carbon emissions

    Algorithms for vehicle routing problems with heterogeneous fleet, flexible time windows and stochastic travel times

    Get PDF
    Orientador: Vinícius Amaral ArmentanoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Este trabalho aborda três variantes multiatributo do problema de roteamento de veículos. A primeira apresenta frota heterogênea, janelas de tempo invioláveis e tempos de viagem determinísticos. Para resolvê-la, são propostos algoritmos ótimos baseados na decomposição de Benders. Estes algoritmos exploram a estrutura do problema em uma formulação de programação inteira mista, e três diferentes técnicas são desenvolvidas para acelerá-los. A segunda variante contempla os atributos de frota heterogênea, janelas de tempo flexíveis e tempos de viagem determinísticos. As janelas de tempo flexíveis permitem o início do serviço nos clientes com antecipação ou atraso limitados em relação às janelas de tempo invioláveis, com custos de penalidade. Este problema é resolvido por extensões dos algoritmos de Benders, que incluem novos algoritmos de programação dinâmica para a resolução de subproblemas com a estrutura do problema do caixeiro viajante com janelas de tempo flexíveis. A terceira variante apresenta frota heterogênea, janelas de tempo flexíveis e tempos de viagem estocásticos, sendo representada por uma formulação de programação estocástica inteira mista de dois estágios com recurso. Os tempos de viagem estocásticos são aproximados por um conjunto finito de cenários, gerados por um algoritmo que os descreve por meio da distribuição de probabilidade Burr tipo XII, e uma matheurística de busca local granular é sugerida para a resolução do problema. Extensivos testes computacionais são realizados em instâncias da literatura, e as vantagens das janelas de tempo flexíveis e dos tempos de viagem estocásticos são enfatizadasAbstract: This work addresses three multi-attribute variants of the vehicle routing problem. The first one presents a heterogeneous fleet, hard time windows and deterministic travel times. To solve this problem, optimal algorithms based on the Benders decomposition are proposed. Such algorithms exploit the structure of the problem in a mixed-integer programming formulation, and three algorithmic enhancements are developed to accelerate them. The second variant comprises a heterogeneous fleet, flexible time windows and deterministic travel times. The flexible time windows allow limited early and late servicing at customers with respect to their hard time windows, at the expense of penalty costs. This problem is solved by extensions of the Benders algorithms, which include novel dynamic programming algorithms for the subproblems with the special structure of the traveling salesman problem with flexible time windows. The third variant presents a heterogeneous fleet, flexible time windows and stochastic travel times, and is represented by a two-stage stochastic mixed-integer programming formulation with recourse. The stochastic travel times are approximated by a finite set of scenarios generated by an algorithm which describes them using the Burr type XII distribution, and a granular local search matheuristic is suggested to solve the problem. Extensive computational tests are performed on instances from the literature, and the advantages of flexible windows and stochastic travel times are stressed.DoutoradoAutomaçãoDoutor em Engenharia Elétrica141064/2015-3CNP
    corecore