1,157 research outputs found

    Autonomous Rock Instance Segmentation for Extra-Terrestrial Robotic Missions

    Get PDF
    The collection and analysis of extra-terrestrial matter are two of the main motivations for space exploration missions. Due to the inherent risks for participating astronauts during space missions, autonomous robotic systems are often consid- ered as a promising alternative. In recent years, many (in- ter)national space missions containing rovers to explore celestial bodies have been launched. Hereby, the communication delay as well as limited bandwidth creates a need for highly self-governed agents that require only infrequent interaction with scientists at a ground station. Such a setting is explored in the ARCHES mis- sion, which seeks to investigate different means of collaboration between scientists and autonomous robots in extra-terrestrial environments. The analog mission focuses a team of hetero- geneous agents (two Lightweight Rover Units and ARDEA, a drone), which together perform various complex tasks under strict communication constraints. In this paper, we highlight three of these tasks that were successfully demonstrated during a one-month test mission on Mt. Etna in Sicily, Italy, which was chosen due to its similarity to the Moon in terms of geological structure. All three tasks have in common, that they leverage an instance segmentation approach deployed on the rovers to detect rocks within camera imagery. The first application is a map- ping scheme that incorporates semantically detected rocks into its environment model to safely navigate to points of interest. Secondly, we present a method for the collection and extraction of in-situ samples with a rover, which uses rock detection to localize relevant candidates to grasp. For the third task, we show the usefulness of stone segmentation to autonomously conduct a spectrometer measurement experiment. We perform a throughout analysis of the presented methods and evaluate our experimental results. The demonstrations on Mt. Etna show that our approaches are well suited for navigation, geological analysis, and sample extraction tasks within autonomous robotic extra-terrestrial missions

    POLAR3D: Augmenting NASA's POLAR Dataset for Data-Driven Lunar Perception and Rover Simulation

    Full text link
    We report on an effort that led to POLAR3D, a set of digital assets that enhance the POLAR dataset of stereo images generated by NASA to mimic lunar lighting conditions. Our contributions are twofold. First, we have annotated each photo in the POLAR dataset, providing approximately 23 000 labels for rocks and their shadows. Second, we digitized several lunar terrain scenarios available in the POLAR dataset. Specifically, by utilizing both the lunar photos and the POLAR's LiDAR point clouds, we constructed detailed obj files for all identifiable assets. POLAR3D is the set of digital assets comprising of rock/shadow labels and obj files associated with the digital twins of lunar terrain scenarios. This new dataset can be used for training perception algorithms for lunar exploration and synthesizing photorealistic images beyond the original POLAR collection. Likewise, the obj assets can be integrated into simulation environments to facilitate realistic rover operations in a digital twin of a POLAR scenario. POLAR3D is publicly available to aid perception algorithm development, camera simulation efforts, and lunar simulation exercises.POLAR3D is publicly available at https://github.com/uwsbel/POLAR-digital.Comment: 7 pages, 4 figures; this work has been submitted to the 2024 IEEE Conference on Robotics and Automation (ICRA) under revie

    OmniLRS: A Photorealistic Simulator for Lunar Robotics

    Full text link
    Developing algorithms for extra-terrestrial robotic exploration has always been challenging. Along with the complexity associated with these environments, one of the main issues remains the evaluation of said algorithms. With the regained interest in lunar exploration, there is also a demand for quality simulators that will enable the development of lunar robots. % In this paper, we explain how we built a Lunar simulator based on Isaac Sim, Nvidia's robotic simulator. In this paper, we propose Omniverse Lunar Robotic-Sim (OmniLRS) that is a photorealistic Lunar simulator based on Nvidia's robotic simulator. This simulation provides fast procedural environment generation, multi-robot capabilities, along with synthetic data pipeline for machine-learning applications. It comes with ROS1 and ROS2 bindings to control not only the robots, but also the environments. This work also performs sim-to-real rock instance segmentation to show the effectiveness of our simulator for image-based perception. Trained on our synthetic data, a yolov8 model achieves performance close to a model trained on real-world data, with 5% performance gap. When finetuned with real data, the model achieves 14% higher average precision than the model trained on real-world data, demonstrating our simulator's photorealism.% to realize sim-to-real. The code is fully open-source, accessible here: https://github.com/AntoineRichard/LunarSim, and comes with demonstrations.Comment: 7 pages, 4 figure

    Vehículo autónomo de siembra y labrado para la agricultura andina del Perú

    Get PDF
    La agricultura es una actividad milenaria realizada por diversas culturas para brindar sustento económico y alimenticio. De la misma manera que la humanidad se ha desarrollado debido a las innovaciones tecnológicas, la agricultura ha formado parte de este crecimiento. Actualmente, las industrias impulsan la agricultura de precisión, la cual emplea los avances tecnológicos para automatizar este proceso artesanal. Con ello se mejora la rentabilidad y precisión de la labor agrícola. No obstante, este tipo de agricultura está enfocada en campos de cultivo dedicados a la industria. Por ende, la región de la sierra del Perú no emplea avances tecnológicos de esta magnitud, puesto que presenta una geografía abrupta y campos de cultivo reducidos (parcelas). En este trabajo de investigación se propone desarrollar un vehículo agrícola autónomo para actividades de sembrado y labrado en campos de cultivo de la sierra peruana. El trabajo de investigación emplea la metodología de diseño mecatrónico VDI 2221, para el cual se desarrolló el estudio del estado de las tecnologías. Asimismo, se estableció los requerimientos de la propuesta solución y el diagrama de funciones de este. A partir de lo estudiado se propuso soluciones para cada función del sistema mediante una matriz morfológica, con lo cual se propusieron tres conceptos solución que fueron contrastados mediante una evaluación técnica económica para determinar el concepto solución óptimo. El desarrollo del concepto solución óptimo consta del diseño mecánico, electrónico y de control del sistema integrado. El diseño mecánico se compone de una estructura principal; un mecanismo de labrado con una herramienta para la creación de surcos en tierra suelta, un sistema de desplazamiento, dirección y suspensión del vehículo en terrenos con desniveles y pendientes máximas de 30°; y una estructura de almacenamiento de semillas con un mecanismo de siembra directa por grupos. Los mecanismos fueron validados con un factor de seguridad 1.5 como mínimo y un tiempo de recuperación en la suspensión de 3.2 s. Por una parte, el diseño electrónico se realiza la selección de sensores para la autonomía; actuadores para el impulsar los mecanismos diseñados; sistema de comunicación; periféricos de interacción y seguridad; unidades de control para el procesamiento de algoritmos, y envió y recepción de señales; y fuentes de energía con sus respectivos reguladores. A partir de ello se obtiene un vehículo capaz de tener una autonomía de funcionamiento de 2.5 h con un factor de seguridad de 1.2. Por otra parte, en el diseño de control se desarrolla un algoritmo de autonomía, el cual realiza la labor agrícola en un entorno predeterminado. Los resultados de su funcionamiento se encuentran en validación. Finalmente, la sección de costos estima el valor monetario para la creación del sistema, este valor se mantiene por debajo del costo de los modelos industriales para vehículos autónomos destinados a la agricultura de presión

    Enabling Faster Locomotion of Planetary Rovers with a Mechanically-Hybrid Suspension

    Full text link
    The exploration of the lunar poles and the collection of samples from the martian surface are characterized by shorter time windows demanding increased autonomy and speeds. Autonomous mobile robots must intrinsically cope with a wider range of disturbances. Faster off-road navigation has been explored for terrestrial applications but the combined effects of increased speeds and reduced gravity fields are yet to be fully studied. In this paper, we design and demonstrate a novel fully passive suspension design for wheeled planetary robots, which couples a high-range passive rocker with elastic in-wheel coil-over shock absorbers. The design was initially conceived and verified in a reduced-gravity (1.625 m/s2^2) simulated environment, where three different passive suspension configurations were evaluated against a set of challenges--climbing steep slopes and surmounting unexpected obstacles like rocks and outcrops--and later prototyped and validated in a series of field tests. The proposed mechanically-hybrid suspension proves to mitigate more effectively the negative effects (high-frequency/high-amplitude vibrations and impact loads) of faster locomotion (>1 m/s) over unstructured terrains under varied gravity fields. This lowers the demand on navigation and control systems, impacting the efficiency of exploration missions in the years to come.Comment: 8 pages, 13 figure

    Martian Lava Tube Exploration Using Jumping Legged Robots: A Concept Study

    Full text link
    In recent years, robotic exploration has become increasingly important in planetary exploration. One area of particular interest for exploration is Martian lava tubes, which have several distinct features of interest. First, it is theorized that they contain more easily accessible resources such as water ice, needed for in-situ utilization on Mars. Second, lava tubes of significant size can provide radiation and impact shelter for possible future human missions to Mars. Third, lava tubes may offer a protected and preserved view into Mars' geological and possible biological past. However, exploration of these lava tubes poses significant challenges due to their sheer size, geometric complexity, uneven terrain, steep slopes, collapsed sections, significant obstacles, and unstable surfaces. Such challenges may hinder traditional wheeled rover exploration. To overcome these challenges, legged robots and particularly jumping systems have been proposed as potential solutions. Jumping legged robots utilize legs to both walk and jump. This allows them to traverse uneven terrain and steep slopes more easily compared to wheeled or tracked systems. In the context of Martian lava tube exploration, jumping legged robots would be particularly useful due to their ability to jump over big boulders, gaps, and obstacles, as well as to descend and climb steep slopes. This would allow them to explore and map such caves, and possibly collect samples from areas that may otherwise be inaccessible. This paper presents the specifications, design, capabilities, and possible mission profiles for state-of-the-art legged robots tailored to space exploration. Additionally, it presents the design, capabilities, and possible mission profiles of a new jumping legged robot for Martian lava tube exploration that is being developed at the Norwegian University of Science and Technology.Comment: 74rd International Astronautical Congress (IAC

    In Situ Soil Property Estimation for Autonomous Earthmoving Using Physics-Infused Neural Networks

    Full text link
    A novel, learning-based method for in situ estimation of soil properties using a physics-infused neural network (PINN) is presented. The network is trained to produce estimates of soil cohesion, angle of internal friction, soil-tool friction, soil failure angle, and residual depth of cut which are then passed through an earthmoving model based on the fundamental equation of earthmoving (FEE) to produce an estimated force. The network ingests a short history of kinematic observations along with past control commands and predicts interaction forces accurately with average error of less than 2kN, 13% of the measured force. To validate the approach, an earthmoving simulation of a bladed vehicle is developed using Vortex Studio, enabling comparison of the estimated parameters to pseudo-ground-truth values which is challenging in real-world experiments. The proposed approach is shown to enable accurate estimation of interaction forces and produces meaningful parameter estimates even when the model and the environmental physics deviate substantially.Comment: 10 pages, 6 figures, to be published in proceedings of 16th European-African Regional Conference of the International Society for Terrain-Vehicle Systems (ISTVS

    In Situ Investigation of the Martian Surface: Quantification of Dust Coverages in Gale crater and Abrasion Marks in Jezero crater

    Get PDF
    In situ measurements by Mars rover missions contribute to our understanding of surface geochemistry, past-depositional environments, and climate conditions that may have once supported life. Microscopic cameras capture high-resolution images of the surface allowing observations of contemporary surface and atmospheric processes. This thesis investigates microscopic images of rock surfaces to (1) measure the abundances of airfall dust covering horizontal surfaces in Gale crater, and (2) measure tool marks preserved in abrasion patches from Jezero crater. The research goals are to understand which variables are influencing surface deposits of airfall dust, and how target surface mineralogy is affecting tool mark preservation. Previous studies have relied on orbital measurements of atmospheric opacity to study the seasonal suspension of Martian dust. Chapter 4 includes the longest single recording of surface dust coverages to date (~6 Mars Years) and contributes to the few studies that have quantified dust abundance at the surface. Using methods developed by Schmidt et al. (2018), dust coverages from 697 Mars Hand Lens Imager (MAHLI) microscopic images ranged from 0.4% to 76.6% and mirrored the results from atmospheric studies. Results indicate dust coverages decline in proximity to active aeolian dune deposits and increase with elevation. Airfall dust coverages on rocks increase annually as Mars enters a New Year (Solar longitude, Ls, ~0) and gradually decrease towards perihelion (Ls 251áµ’) when seasonal winds are strongest. To examine unweathered rock interiors, the Mars 2020 mission uses a rock abrader to remove ~10 mm of surface coatings and rinds. Operation complications including flaws in rock (e.g., cracks, vugs, and voids) and shifting of the outcrop during abrasion, have caused 5 failed abrasion attempts. To better understand how physical properties influence the abrasion process, radial abrasion marks preserved in 10 successful abrasion patches were measured, relating abundance to mineralogy. Targets rich in primary igneous materials (i.e., crater floor targets) preserve greater counts and shorter abrasion lengths, compared to softer, sulfate- and carbonate- cemented sedimentary materials (i.e., delta front targets). The observations and results from this study will hopefully improve the prodapt algorithm that controls drilling parameters during abrasion and prevent future failed abrasion attempts
    • …
    corecore