10,433 research outputs found

    Detecting shadows and low-lying objects in indoor and outdoor scenes using homographies

    Get PDF
    Many computer vision applications apply background suppression techniques for the detection and segmentation of moving objects in a scene. While these algorithms tend to work well in controlled conditions they often fail when applied to unconstrained real-world environments. This paper describes a system that detects and removes erroneously segmented foreground regions that are close to a ground plane. These regions include shadows, changing background objects and other low-lying objects such as leaves and rubbish. The system uses a set-up of two or more cameras and requires no 3D reconstruction or depth analysis of the regions. Therefore, a strong camera calibration of the set-up is not necessary. A geometric constraint called a homography is exploited to determine if foreground points are on or above the ground plane. The system takes advantage of the fact that regions in images off the homography plane will not correspond after a homography transformation. Experimental results using real world scenes from a pedestrian tracking application illustrate the effectiveness of the proposed approach

    Quadrotor control for persistent surveillance of dynamic environments

    Full text link
    Thesis (M.S.)--Boston UniversityThe last decade has witnessed many advances in the field of small scale unmanned aerial vehicles (UAVs). In particular, the quadrotor has attracted significant attention. Due to its ability to perform vertical takeoff and landing, and to operate in cluttered spaces, the quadrotor is utilized in numerous practical applications, such as reconnaissance and information gathering in unsafe or otherwise unreachable environments. This work considers the application of aerial surveillance over a city-like environment. The thesis presents a framework for automatic deployment of quadrotors to monitor and react to dynamically changing events. The framework has a hierarchical structure. At the top level, the UAVs perform complex behaviors that satisfy high- level mission specifications. At the bottom level, low-level controllers drive actuators on vehicles to perform the desired maneuvers. In parallel with the development of controllers, this work covers the implementation of the system into an experimental testbed. The testbed emulates a city using physical objects to represent static features and projectors to display dynamic events occurring on the ground as seen by an aerial vehicle. The experimental platform features a motion capture system that provides position data for UAVs and physical features of the environment, allowing for precise, closed-loop control of the vehicles. Experimental runs in the testbed are used to validate the effectiveness of the developed control strategies

    Intelligent Adaptive Motion Control for Ground Wheeled Vehicles

    Get PDF
    In this paper a new intelligent adaptive control is applied to solve a problem of motion control of ground vehicles with two independent wheels actuated by a differential drive. The major objective of this work is to obtain a motion control system by using a new fuzzy inference mechanism where the Lyapunov’s stability can be assured. In particular the parameters of the kinematical control law are obtained using an intelligent Fuzzy mechanism, where the properties of the Fuzzy maps have been established to have the stability above. Due to the nonlinear map of the intelligent fuzzy inference mechanism (i.e. fuzzy rules and value of the rule), the parameters above are not constant, but, time after time, based on empirical fuzzy rules, they are updated in function of the values of the tracking errors. Since the fuzzy maps are adjusted based on the control performances, the parameters updating assures a robustness and fast convergence of the tracking errors. Also, since the vehicle dynamics and kinematics can be completely unknown, a dynamical and kinematical adaptive control is added. The proposed fuzzy controller has been implemented for a real nonholonomic electrical vehicle. Therefore system robustness and stability performance are verified through simulations and experimental studies
    corecore