31 research outputs found

    Intelligent Approaches for Energy-Efficient Resource Allocation in the Cognitive Radio Network

    Get PDF
    The cognitive radio (CR) is evolved as the promising technology to alleviate the spectrum scarcity issues by allowing the secondary users (SUs) to use the licensed band in an opportunistic manner. Various challenges need to be addressed before the successful deployment of CR technology. This thesis work presents intelligent resource allocation techniques for improving energy efficiency (EE) of low battery powered CR nodes where resources refer to certain important parameters that directly or indirectly affect EE. As far as the primary user (PU) is concerned, the SUs are allowed to transmit on the licensed band until their transmission power would not cause any interference to the primary network. Also, the SUs must use the licensed band efficiently during the PU’s absence. Therefore, the two key factors such as protection to the primary network and throughput above the threshold are important from the PU’s and SUs’ perspective, respectively. In deployment of CR, malicious users may be more active to prevent the CR users from accessing the spectrum or cause unnecessary interference to the both primary and secondary transmission. Considering these aspects, this thesis focuses on developing novel approaches for energy-efficient resource allocation under the constraints of interference to the PR, minimum achievable data rate and maximum transmission power by optimizing the resource parameters such as sensing time and the secondary transmission power with suitably selecting SUs. Two different domains considered in this thesis are the soft decision fusion (SDF)-based cooperative spectrum sensing CR network (CRN) models without and with the primary user emulation attack (PUEA). An efficient iterative algorithm called iterative Dinkelbach method (IDM) is proposed to maximize EE with suitable SUs in the absence of the attacker. In the proposed approaches, different constraints are evaluated considering the negative impact of the PUE attacker on the secondary transmission while maximizing EE with the PUE attacker. The optimization problem associated with the non-convex constraints is solved by our proposed iterative resource allocation algorithms (novel iterative resource allocation (NIRA) and novel adaptive resource allocation (NARA)) with suitable selection of SUs for jointly optimizing the sensing time and power allocation. In the CR enhanced vehicular ad hoc network (CR-VANET), the time varying channel responses with the vehicular movement are considered without and with the attacker. In the absence of the PUE attacker, an interference-aware power allocation scheme based on normalized least mean square (NLMS) algorithm is proposed to maximize EE considering the dynamic constraints. In the presence of the attacker, the optimization problem associated with the non-convex and time-varying constraints is solved by an efficient approach based on genetic algorithm (GA). Further, an investigation is attempted to apply the CR technology in industrial, scientific and medical (ISM) band through spectrum occupancy prediction, sub-band selection and optimal power allocation to the CR users using the real time indoor measurement data. Efficacies of the proposed approaches are verified through extensive simulation studies in the MATLAB environment and by comparing with the existing literature. Further, the impacts of different network parameters on the system performance are analyzed in detail. The proposed approaches will be highly helpful in designing energy-efficient CRN model with low complexity for future CR deployment

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    NASA Tech Briefs, June 1992

    Get PDF
    Topics covered include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation
    corecore