635 research outputs found

    IRS-assisted UAV Communications: A Comprehensive Review

    Full text link
    Intelligent reflecting surface (IRS) can smartly adjust the wavefronts in terms of phase, frequency, amplitude and polarization via passive reflections and without any need of radio frequency (RF) chains. It is envisaged as an emerging technology which can change wireless communication to improve both energy and spectrum efficiencies with low energy consumption and low cost. It can intelligently configure the wireless channels through a massive number of cost effective passive reflecting elements to improve the system performance. Similarly, unmanned aerial vehicle (UAV) communication has gained a viable attention due to flexible deployment, high mobility and ease of integration with several technologies. However, UAV communication is prone to security issues and obstructions in real-time applications. Recently, it is foreseen that UAV and IRS both can integrate together to attain unparalleled capabilities in difficult scenarios. Both technologies can ensure improved performance through proactively altering the wireless propagation using smart signal reflections and maneuver control in three dimensional (3D) space. IRS can be integrated in both aerial and terrene environments to reap the benefits of smart reflections. This study briefly discusses UAV communication, IRS and focuses on IRS-assisted UAC communications. It surveys the existing literature on this emerging research topic and highlights several promising technologies which can be implemented in IRS-assisted UAV communication. This study also presents several application scenarios and open research challenges. This study goes one step further to elaborate research opportunities to design and optimize wireless systems with low energy footprint and at low cost. Finally, we shed some light on future research aspects for IRS-assisted UAV communication

    Trustworthy Edge Machine Learning: A Survey

    Full text link
    The convergence of Edge Computing (EC) and Machine Learning (ML), known as Edge Machine Learning (EML), has become a highly regarded research area by utilizing distributed network resources to perform joint training and inference in a cooperative manner. However, EML faces various challenges due to resource constraints, heterogeneous network environments, and diverse service requirements of different applications, which together affect the trustworthiness of EML in the eyes of its stakeholders. This survey provides a comprehensive summary of definitions, attributes, frameworks, techniques, and solutions for trustworthy EML. Specifically, we first emphasize the importance of trustworthy EML within the context of Sixth-Generation (6G) networks. We then discuss the necessity of trustworthiness from the perspective of challenges encountered during deployment and real-world application scenarios. Subsequently, we provide a preliminary definition of trustworthy EML and explore its key attributes. Following this, we introduce fundamental frameworks and enabling technologies for trustworthy EML systems, and provide an in-depth literature review of the latest solutions to enhance trustworthiness of EML. Finally, we discuss corresponding research challenges and open issues.Comment: 27 pages, 7 figures, 10 table

    Five Facets of 6G: Research Challenges and Opportunities

    Full text link
    Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components
    • …
    corecore