89,650 research outputs found

    Adversarial learning games with deep learning models

    Full text link
    © 2017 IEEE. Deep learning has been found to be vulnerable to changes in the data distribution. This means that inputs that have an imperceptibly and immeasurably small difference from training data correspond to a completely different class label in deep learning. Thus an existing deep learning network like a Convolutional Neural Network (CNN) is vulnerable to adversarial examples. We design an adversarial learning algorithm for supervised learning in general and CNNs in particular. Adversarial examples are generated by a game theoretic formulation on the performance of deep learning. In the game, the interaction between an intelligent adversary and deep learning model is a two-person sequential noncooperative Stackelberg game with stochastic payoff functions. The Stackelberg game is solved by the Nash equilibrium which is a pair of strategies (learner weights and genetic operations) from which there is no incentive for either learner or adversary to deviate. The algorithm performance is evaluated under different strategy spaces on MNIST handwritten digits data. We show that the Nash equilibrium leads to solutions robust to subsequent adversarial data manipulations. Results suggest that game theory and stochastic optimization algorithms can be used to study performance vulnerabilities in deep learning models

    High-Dimensional Stochastic Gradient Quantization for Communication-Efficient Edge Learning

    Full text link
    Edge machine learning involves the deployment of learning algorithms at the wireless network edge so as to leverage massive mobile data for enabling intelligent applications. The mainstream edge learning approach, federated learning, has been developed based on distributed gradient descent. Based on the approach, stochastic gradients are computed at edge devices and then transmitted to an edge server for updating a global AI model. Since each stochastic gradient is typically high-dimensional (with millions to billions of coefficients), communication overhead becomes a bottleneck for edge learning. To address this issue, we propose in this work a novel framework of hierarchical stochastic gradient quantization and study its effect on the learning performance. First, the framework features a practical hierarchical architecture for decomposing the stochastic gradient into its norm and normalized block gradients, and efficiently quantizes them using a uniform quantizer and a low-dimensional codebook on a Grassmann manifold, respectively. Subsequently, the quantized normalized block gradients are scaled and cascaded to yield the quantized normalized stochastic gradient using a so-called hinge vector designed under the criterion of minimum distortion. The hinge vector is also efficiently compressed using another low-dimensional Grassmannian quantizer. The other feature of the framework is a bit-allocation scheme for reducing the quantization error. The scheme determines the resolutions of the low-dimensional quantizers in the proposed framework. The framework is proved to guarantee model convergency by analyzing the convergence rate as a function of the quantization bits. Furthermore, by simulation, our design is shown to substantially reduce the communication overhead compared with the state-of-the-art signSGD scheme, while both achieve similar learning accuracies

    PEMODELAN PREDIKSI KUAT TEKAN BETON UMUR MUDA MENGGUNAKAN H2O'S DEEP LEARNING

    Get PDF
    Artificial Neural Network (ANN) is a Machine Learning (ML) algorithm which learn by itself and organize its thinking to solve problems. Although the learning process involves many hidden layers (Deep Learning) this algorithm still has weaknesses when faced with high noise data. Concrete mixture design data has a high enough noise caused by many unidentified / measurable aspects such as planning, design, manufacture of test specimens, maintenance, testing, diversity of physical and chemical properties, mixed formulas, mixed design errors, environmental conditions, and testing process. Information needs about the compressive strength of early age concrete (under 28 days) are often needed while the construction process is still ongoing. ANN has been tried to predict the compressive strength of concrete, but the results are less than optimal. This study aims to improve the ANN prediction model using an H2O’s Deep Learning based on a multi-layer feedforward artificial neural network that is trained with stochastic gradient descent using backpropagation. The H2O’s Deep Learning best model is achieved by 2 hidden layers- 50 hidden neurons and ReLU activation function with a RMSE value of 6,801. This Machine Learning model can be used as an alternative/ substitute for conventional mix designs, which are environmentally friendly, economical, and accurate. Future work with regard to the concrete industry, this model can be applied to create an intelligent Batching and Mixing Plants

    Learning for Multi-robot Cooperation in Partially Observable Stochastic Environments with Macro-actions

    Get PDF
    This paper presents a data-driven approach for multi-robot coordination in partially-observable domains based on Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) and macro-actions (MAs). Dec-POMDPs provide a general framework for cooperative sequential decision making under uncertainty and MAs allow temporally extended and asynchronous action execution. To date, most methods assume the underlying Dec-POMDP model is known a priori or a full simulator is available during planning time. Previous methods which aim to address these issues suffer from local optimality and sensitivity to initial conditions. Additionally, few hardware demonstrations involving a large team of heterogeneous robots and with long planning horizons exist. This work addresses these gaps by proposing an iterative sampling based Expectation-Maximization algorithm (iSEM) to learn polices using only trajectory data containing observations, MAs, and rewards. Our experiments show the algorithm is able to achieve better solution quality than the state-of-the-art learning-based methods. We implement two variants of multi-robot Search and Rescue (SAR) domains (with and without obstacles) on hardware to demonstrate the learned policies can effectively control a team of distributed robots to cooperate in a partially observable stochastic environment.Comment: Accepted to the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017

    Model-Free Learning of Optimal Beamformers for Passive IRS-Assisted Sumrate Maximization

    Full text link
    Although Intelligent Reflective Surfaces (IRSs) are a cost-effective technology promising high spectral efficiency in future wireless networks, obtaining optimal IRS beamformers is a challenging problem with several practical limitations. Assuming fully-passive, sensing-free IRS operation, we introduce a new data-driven Zeroth-order Stochastic Gradient Ascent (ZoSGA) algorithm for sumrate optimization in an IRS-aided downlink setting. ZoSGA does not require access to channel model or network structure information, and enables learning of optimal long-term IRS beamformers jointly with standard short-term precoding, based only on conventional effective channel state information. Supported by state-of-the-art (SOTA) convergence analysis, detailed simulations confirm that ZoSGA exhibits SOTA empirical behavior as well, consistently outperforming standard fully model-based baselines, in a variety of scenarios

    Online quantum mixture regression for trajectory learning by demonstration

    No full text
    In this work, we present the online Quantum Mixture Model (oQMM), which combines the merits of quantum mechanics and stochastic optimization. More specifically it allows for quantum effects on the mixture states, which in turn become a superposition of conventional mixture states. We propose an efficient stochastic online learning algorithm based on the online Expectation Maximization (EM), as well as a generation and decay scheme for model components. Our method is suitable for complex robotic applications, where data is abundant or where we wish to iteratively refine our model and conduct predictions during the course of learning. With a synthetic example, we show that the algorithm can achieve higher numerical stability. We also empirically demonstrate the efficacy of our method in well-known regression benchmark datasets. Under a trajectory Learning by Demonstration setting we employ a multi-shot learning application in joint angle space, where we observe higher quality of learning and reproduction. We compare against popular and well-established methods, widely adopted across the robotics community
    corecore