18,702 research outputs found

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Designing algorithms to aid discovery by chemical robots

    Get PDF
    Recently, automated robotic systems have become very efficient, thanks to improved coupling between sensor systems and algorithms, of which the latter have been gaining significance thanks to the increase in computing power over the past few decades. However, intelligent automated chemistry platforms for discovery orientated tasks need to be able to cope with the unknown, which is a profoundly hard problem. In this Outlook, we describe how recent advances in the design and application of algorithms, coupled with the increased amount of chemical data available, and automation and control systems may allow more productive chemical research and the development of chemical robots able to target discovery. This is shown through examples of workflow and data processing with automation and control, and through the use of both well-used and cutting-edge algorithms illustrated using recent studies in chemistry. Finally, several algorithms are presented in relation to chemical robots and chemical intelligence for knowledge discovery

    Adaptive Decision Support for Shop-floor Operators in Automotive Industry

    Get PDF
    AbstractToday's operators on factory shop-floors are often not stationed, dealing with a single or few tasks but have increasing responsibilities demanding enhanced skills and knowledge in a production environment where any disturbance must be settled with adequate actions without delay to keep optimum output. To be able to respond to these demands, the operators need dynamic, distributed and adaptive decision support in real-time, helping them to distinguish decision options and maximizing productivity despite incoming stochastic events. The minimum of time and option for operators to consider appropriate action both during normal production and when facing unexpected or unscheduled events point out the need of adaptive decision support for operators. When initiating this research project the question from the industry partner was the following: In what ways is it possible to support operators in making decisions for optimal productivity? By targeting this problem this paper introduces a novel framework for an adaptive decision-support system enabled by event-driven function blocks and based on decision logics. The proposed decision support systems’ ability to adapt to the actual conditions on the shop-floor is validated through a case study, and its capability is compared to the voice message system installed on-site

    Assessing the effectiveness of direct gesture interaction for a safety critical maritime application

    Get PDF
    Multi-touch interaction, in particular multi-touch gesture interaction, is widely believed to give a more natural interaction style. We investigated the utility of multi-touch interaction in the safety critical domain of maritime dynamic positioning (DP) vessels. We conducted initial paper prototyping with domain experts to gain an insight into natural gestures; we then conducted observational studies aboard a DP vessel during operational duties and two rounds of formal evaluation of prototypes - the second on a motion platform ship simulator. Despite following a careful user-centred design process, the final results show that traditional touch-screen button and menu interaction was quicker and less erroneous than gestures. Furthermore, the moving environment accentuated this difference and we observed initial use problems and handedness asymmetries on some multi-touch gestures. On the positive side, our results showed that users were able to suspend gestural interaction more naturally, thus improving situational awareness

    ODDIN: ontology-driven differential diagnosis based on logical inference and probabilistic refinements

    Get PDF
    Medical differential diagnosis (ddx) is based on the estimation of multiple distinct parameters in order to determine the most probable diagnosis. Building an intelligent medical differential diagnosis system implies using a number of knowledge based technologies which avoid ambiguity, such as ontologies rep resenting specific structured information, but also strategies such as computation of probabilities of var ious factors and logical inference, whose combination outperforms similar approaches. This paper presents ODDIN, an ontology driven medical diagnosis system which applies the aforementioned strat egies. The architecture and proof of concept implementation is described, and results of the evaluation are discussed.This work is supported by the Spanish Ministry of Industry, Tourism, and Commerce under the project SONAR (TSI-340000-2007-212), GODO2 (TSI-020100-2008-564) and SONAR2 (TSI-020100-2008-665), under the PIBES project of the Spanish Committee of Education & Science (TEC2006-12365-C02-01) and the MID-CBR project of the Spanish Committee of Education & Science (TIN2006-15140-C03-02).Publicad
    • 

    corecore